【題目】甲、乙兩地之間的高速公路全長200千米,比原來國道的長度減少了20千米.高速公路通車后,某長途汽車的行駛速度提高了45千米/時,從甲地到乙地的行駛時間縮短了一半,求長途汽車在原來國道上行駛的速度.

【答案】長途汽車在原來國道上行駛的速度為55千米/.

【解析】

設(shè)長途汽車在原來國道上行駛的速度為x千米/時,則在高速公路行駛的速度為(x+45)千米/時,高速公路全長200千米,國道長220千米,根據(jù)“甲地到乙地的行駛時間縮短了一半”列出關(guān)于x的分式方程,然后求解方程即可.

解:設(shè)長途汽車在原來國道上行駛的速度為x千米/時,則再高速公路行駛的速度為(x+45)千米/時,

根據(jù)題意可列方程為:,

去分母:

去括號:,

移項合并:

系數(shù)化1x=55,

檢驗:當(dāng)x=55時,x+45≠0,

x=55是原方程的根,

則長途汽車在原來國道上行駛的速度為55千米/.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)的小明和朱老師一起到一條筆直的跑道上鍛煉身體,到達(dá)起點后小明做了一會準(zhǔn)備活動朱老師先跑,當(dāng)小明出發(fā)時,朱老師已經(jīng)距起點200米了,他們距起點的距離s(米)與小明出發(fā)的時間t(秒)之間的關(guān)系如圖所示(不完整).根據(jù)圖中給出的信息,解答下列問題:

(1)在上述變化過程中,自變量是   ,因變量是   

(2)朱老師的速度為   米/秒;小明的速度為   米/秒;

(3)小明與朱老師相遇   次,相遇時距起點的距離分別為   米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠ACB=90°,AC=6cmBC=8cm,動點P從點B出發(fā),在BA邊上以每秒5cm的速度向點A勻速運動,同時動點Q從點C出發(fā),在CB邊上以每秒4cm的速度向點B勻速運動,運動時間為t秒(0t2),連接PQ

1)若△BPQ△ABC相似,求t的值;

2)連接AQ、CP,若AQ⊥CP,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=(m-2)x2+(m+3)x+m+2的圖象過點(0,5)

(1)求m的值,并寫出二次函數(shù)的表達(dá)式;

(2)求出二次函數(shù)圖象的頂點坐標(biāo)、對稱軸。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一列快車從甲地駛往乙地,一列慢車從乙地駛往甲地,兩車同時出發(fā),勻速行駛.設(shè)慢車行駛的時間xh),兩車之的距離為ykm),圖中的折線表示yx之間的函數(shù)關(guān)系.

1)求慢車和快車的速度;

2)求線段BC所表示的yx的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

3)第一列快車出發(fā)后又有一列快車(與第一列快車速度相同)從甲地出發(fā),與慢車同時到達(dá)各自的目的地.請直接寫出第二列快車出發(fā)后經(jīng)過多少小時與慢車相遇,相遇時他們距甲地的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,湖心島上有一涼亭,現(xiàn)欲利用湖岸邊的開闊平整地帶,測量涼亭頂端到湖面所在平面的高度AB(見示意圖),可供使用的工具有測傾器、皮尺.

(1)請你根據(jù)現(xiàn)有條件,設(shè)計一個測量涼亭頂端到湖面所在平面的高度AB的方案,畫出測量方案的平面示意圖,并將測量的數(shù)據(jù)標(biāo)注在圖形上(所測的距離用m,n,…表示,角用α,β,…表示,測傾器高度忽略不計);

(2)根據(jù)你所測量的數(shù)據(jù),計算涼亭到湖面的高度AB(用字母表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠BAD=∠C=90°,AB=AD,AE⊥CD,垂足為E,若線段AE=10,則S四邊形ABCD=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù),下列結(jié)論正確的是(

A.它的圖象必經(jīng)過點(-1,1B.它的圖象不經(jīng)過第三象限

C.當(dāng)時,D.的值隨值的增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某塔觀光層的最外沿點E為蹦極項目的起跳點.已知點E離塔的中軸線AB的距離OE為10米,塔高AB為123米(AB垂直地面BC),在地面C處測得點E的仰角α=45°,從點C沿CB方向前行40米到達(dá)D點,在D處測得塔尖A的仰角β=60°,求點E離地面的高度EF.(結(jié)果精確到0.1米)

查看答案和解析>>

同步練習(xí)冊答案