【題目】如圖,在Rt△ABC中,∠ABC=90°∠ACB=60°.將Rt△ABC繞點(diǎn)C順時(shí)針?lè)较蛐D(zhuǎn)后得到△DEC(△DEC≌△ABC),點(diǎn)E在AC上,再將Rt△ABC沿著AB所在直線翻轉(zhuǎn)180°得到△ABF,連接AD.
(1)求證:四邊形AFCD是菱形;
(2)連接BE并延長(zhǎng)交AD于點(diǎn)G,連接CG.請(qǐng)問(wèn):四邊形ABCG是什么特殊平行四邊形?為什么?
【答案】(1)見(jiàn)解析;(2))四邊形 ABCG 是矩形,見(jiàn)解析.
【解析】
(1)需證明△ACD是等邊三角形、△AFC是等邊三角形,即可證明四邊形AFCD是菱形.(2)先證明四邊形ABCG是平行四邊形,再由∠ABC=90°,可證四邊形ABCG是矩形。
解:(1) 證明:△DEC 是由 Rt△ABC 繞 C 點(diǎn)旋轉(zhuǎn)后得到.
∴AC=DC,∠ACD=∠ACB=60°.
∴△ACD 是等邊三角形,
∴AD=DC=AC.
又∵Rt△ABF 是由 Rt△ABC 沿 AB 所在直線翻轉(zhuǎn) 180°得到
∴AC=AF,∠ABF=∠ABC=90°.
∴∠FBC 是平角,∴ 點(diǎn) F、B、C 三點(diǎn)共線
∴△AFC 是等邊三角形
∴AF=FC=AC.
∴AD=DC=FC=AF.
∴四邊形 AFCD 是菱形,
(2)四邊形 ABCG 是矩形.
證明:由(1)可知:△ACD 是等邊三角形,∠DEC=∠ABC=90°.
∴DE⊥AC 于 E.∴AE=EC.
∵四邊形 AFCD 是菱形,∴AG∥BC.
∴∠EAG=∠ECB,∠AGE=∠EBC.
∴△AEG≌△CEB,∴BE=EG.
∴四邊形 ABCG 是平行四邊形.
而∠ACB=90°,∴四邊形 ABCG 是矩形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果關(guān)于的分式方程有負(fù)分?jǐn)?shù)解,且關(guān)于的不等式組的解集為,那么符合條件的所有整數(shù)的積是( )
A. B. 0 C. 3 D. 9
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中有一直角三角形AOB,O為坐標(biāo)原點(diǎn),OA=1,tan∠BAO=3,將此三角形繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到△DOC,拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)A、B、C.
(1)求拋物線的解析式;
(2)若點(diǎn)P是第二象限內(nèi)拋物線上的動(dòng)點(diǎn),其橫坐標(biāo)為t,
①設(shè)拋物線對(duì)稱軸l與x軸交于一點(diǎn)E,連接PE,交CD于F,求出當(dāng)△CEF與△COD相似時(shí),點(diǎn)P的坐標(biāo);
②是否存在一點(diǎn)P,使△PCD的面積最大?若存在,求出△PCD的面積的最大值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】A、B兩地相距64 km,甲從A地出發(fā),每小時(shí)行14 km,乙從B地出發(fā),每小時(shí)行18 km.
(1)若兩人同時(shí)出發(fā)相向而行,則需經(jīng)過(guò)幾小時(shí)兩人相遇?
(2)若兩人同時(shí)出發(fā)相向而行,則需經(jīng)過(guò)幾小時(shí)兩人相距16 km?
(3)若甲在前,乙在后,兩人同時(shí)同向而行,則幾小時(shí)后乙超過(guò)甲10 km?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將矩形紙片ABCD按如圖方式折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落到C′處,折痕為EF.若AD=9AB=6,求折痕EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“創(chuàng)衛(wèi)工作人人參與,環(huán)境衛(wèi)生人人受益”,我區(qū)創(chuàng)衛(wèi)工作已進(jìn)入攻堅(jiān)階段.某校擬整修學(xué)校食堂,現(xiàn)需購(gòu)買(mǎi)A、B兩種型號(hào)的防滑地磚共60塊,已知A型號(hào)地磚每塊80元,B型號(hào)地磚每塊40元.
(1)若采購(gòu)地磚的費(fèi)用不超過(guò)3200元,那么,最多能購(gòu)買(mǎi)A型號(hào)地磚多少塊?
(2)某地磚供應(yīng)商為了支持創(chuàng)衛(wèi)工作,現(xiàn)將A、B兩種型號(hào)的地磚單價(jià)都降低a%,這樣,該;ㄙM(fèi)了2560元就購(gòu)得所需地磚,其中A型號(hào)地磚a塊,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列等式變形不一定正確的是( ).
A.若 x=y,則 x-5=y-5B.若 x=y,則 ax=ay
C.若 x=y,則 3-2x=3-2yD.若 x=y,則
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,E、F是對(duì)角線BD上兩點(diǎn),且∠EAF=45°,將△ADF繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后,得到△ABQ,連接EQ,求證:
(1)EA是∠QED的平分線;
(2)EF2=BE2+DF2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,∠ABC與∠BAD的度數(shù)比為1:2,周長(zhǎng)是8cm.
求:(1)兩條對(duì)角線的長(zhǎng)度;(2)菱形的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com