【題目】如圖,在直角坐標系中有一直角三角形AOB,O為坐標原點,OA=1,tan∠BAO=3,將此三角形繞原點O逆時針旋轉(zhuǎn)90°,得到△DOC,拋物線y=ax2+bx+c經(jīng)過點A、B、C.
(1)求拋物線的解析式;
(2)若點P是第二象限內(nèi)拋物線上的動點,其橫坐標為t,
①設拋物線對稱軸l與x軸交于一點E,連接PE,交CD于F,求出當△CEF與△COD相似時,點P的坐標;
②是否存在一點P,使△PCD的面積最大?若存在,求出△PCD的面積的最大值;若不存在,請說明理由.
【答案】(1)
(2)①P點的坐標為:(﹣1,4)或(﹣2,3)。
②當t=﹣時,S△PCD的最大值為。
【解析】試題分析:(1)由三角函數(shù)的定義可求得OB,再結合旋轉(zhuǎn)可得到A、B、C的坐標,利用待定系數(shù)法可求得拋物線解析式;
(2)①△COD為直角三角形,可知當△CEF與△COD相似時有兩種情況,即∠FEC=90°或∠EFC=90°,當PE⊥CE時,則可得拋物線的頂點滿足條件,當PE⊥CD時,過P作PG⊥x軸于點G,可證△PGE∽△COD,利用相似三角形的性質(zhì)可得到關于t的方程,可求得P點坐標;②可求得直線CD的解析式,過P作PN⊥x軸于點N,交CD于點M,可用t表示出PM的長,當PM取最大值時,則△PCD的面積最大,可求得其最大值.
試題解析:(1)∵OA=1.tan∠BAO=3,
∴=3,解得OB=3,
又由旋轉(zhuǎn)可得OB=OC=3,
∴A(1,0),B(0,3),C(-3,0),
設拋物線解析式為y=ax2+bx+c,把A、B、C三點的坐標代入可得
,解得,
∴拋物線解析式為y=-x2-2x+3,
(2)①由(1)可知拋物線對稱軸為x=-1,頂點坐標為(-1,4),
∵△COD為直角三角形,
∴當△CEF與△COD相似時有兩種情況,即∠FEC=90°或∠EFC=90°,
若∠FEC=90°,則PE⊥CE,
∵對稱軸與x軸垂直,
∴此時拋物線的頂點即為滿足條件的P點,此時P點坐標為(-1,4);
若∠EFC=90°,則PE⊥CD,
如圖,過P作PG⊥x軸于點G,
則∠GPE+∠PEG=∠DCO+∠PEG,
∴∠GPE=∠OCD,且∠PGE=∠COD=90°,
∴△PGE∽△COD,
∴,
∵E(-1,0),G(t,0),且P點橫坐標為t,
∴GE=-1-t,PG=-t2-2t+3,
∴,解得t=-2或t=3,
∵P點在第二象限,
∴t<0,即t=-2,
此時P點坐標為(-2,3),
綜上可知滿足條件的P點坐標為(-1,4)或(-2,3);
②設直線CD解析式為y=kx+m,
把C、D兩點坐標代入可得,解得,
∴直線CD解析式為y=x+1,
如圖2,過P作PN⊥x軸,交x軸于點N,交直線CD于點M,
∵P點橫坐標為t,
∴PN=-t2-2t+3,MN=t+1,
∵P點在第二象限,
∴P點在M點上方,
∴PM=PN-MN=-t2-2t+3-(t+1)=-t2-t+2=-(t+)2+,
∴當t=-時,PM有最大值,最大值為,
∵S△PCD=S△PCM+S△PDM=PMCN+PMNO=PMOC=PM,
∴當PM有最大值時,△PCD的面積有最大值,
∴(S△PCD)max=×=,
綜上可知存在點P使△PCD的面積最大,△PCD的面積有最大值為.
科目:初中數(shù)學 來源: 題型:
【題目】南江縣在“創(chuàng)國家級衛(wèi)生城市”中,朝陽社區(qū)計劃對某區(qū)域進行綠化,經(jīng)投標,由甲、乙兩個工程隊來完成,已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化面積的2倍,并且在獨立完成面積為400m2區(qū)域的綠化時,甲隊比乙隊少用4天.求甲、乙兩工程隊每天能完成綠化的面積是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB,CD相交于點O,OE,OF,OG分別是∠AOC,∠BOD,∠BOC的平分線,以下說法不正確的是( )
A.∠DOF與∠COG互為余角
B.∠COG與∠AOG互為補角
C.射線OE,OF不一定在同一條直線上
D.射線OE,OG互相垂直
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某游泳館普通票價20元/張,暑假為了促銷,新推出兩種優(yōu)惠卡:
①金卡售價600元/張,每次憑卡不再收費.
②銀卡售價150元/張,每次憑卡另收10元.
暑假普通票正常出售,兩種優(yōu)惠卡僅限暑假使用,不限次數(shù).設游泳x次時,所需總費用為y元.
(1)分別寫出選擇銀卡、普通票消費時,y與x之間的函數(shù)關系式;
(2)在同一坐標系中,若三種消費方式對應的函數(shù)圖象如圖所示,請求出點A、B、C的坐標;
(3)請根據(jù)函數(shù)圖象,直接寫出選擇哪種消費方式更合算.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在“端午”期間,小明、小亮等同學隨家長一同到某公園游玩,下面是購買門票時,小明與他爸爸的對話(如圖),試根據(jù)圖中的信息,解答下列問題:
(1)他們共去了幾個成人,幾個學生?
(2)請你幫助算算,小明用更省錢的購票方式是指什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一次函數(shù)y1=kx+b與y2=x+a的圖象如圖,則下列結論:①k<0;②a>0;③關于x的方程kx﹣x=a﹣b的解是x=3;④當x<3時,y1<y2中.則正確的序號有________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知CO1是△ABC的中線,過點O1作O1E1∥AC交BC于點E1,連接AE1交CO1于點O2;過點O2作O2E2∥AC交BC于點E2,連接AE2交CO1于點O3;過點O3作O3E3∥AC交BC于點E3,…,如此繼續(xù),可以依次得到點O4,O5,…,On和點E4,E5,…,En.則OnEn= AC.(用含n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°∠ACB=60°.將Rt△ABC繞點C順時針方向旋轉(zhuǎn)后得到△DEC(△DEC≌△ABC),點E在AC上,再將Rt△ABC沿著AB所在直線翻轉(zhuǎn)180°得到△ABF,連接AD.
(1)求證:四邊形AFCD是菱形;
(2)連接BE并延長交AD于點G,連接CG.請問:四邊形ABCG是什么特殊平行四邊形?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(選做題)包括兩個小題,請選定其中一個小題用一元一次方程作答.
A.一根尼龍繩,小江第一次用去它的一半少米,第二次用去米,結果還剩下原來的,試問這根尼龍繩原來有多長?
B.小蘇、小江家相距千米且附近均設有火車站,一列慢車從小江家附近的火車站駛往小蘇家附近的火車站,速度為,一列快車從小蘇家附近的火車站駛往小江家附近的火車站,速度為,若兩車同時出發(fā),多少時間后兩車相距?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com