【題目】如圖,已知等腰三角形ABC的底角為30°,以BC為直徑的⊙O與底邊AB交于點(diǎn)D,過D作DE⊥AC,垂足為E.
(1)證明:DE為⊙O的切線;
(2)若BC=4,求陰影部分的面積.
【答案】(1)證明見解析(2)
【解析】
(1)連接OD,CD,由以BC為直徑的⊙O,可得∠BDC=90°,又由等腰△ABC的底角為30°,可得AD=BD,即可證得OD∥AC,繼而可證得結(jié)論;(2)根據(jù)三角函數(shù)的性質(zhì),求得CD、CE、DE的長(zhǎng),根據(jù)S陰=S四邊形ODEC﹣S扇形ODC即可求得陰影部分的面積.
(1)證明:連接OD,CD,
∵BC為⊙O直徑,
∴∠BDC=90°,
∵△ABC是等腰三角形,
∴AD=BD,
∵OB=OC,
∴OD∥AC,
∵DE⊥AC,
∴OD⊥DE,
∴DE為⊙O的切線;
(2)∵∠A=∠B=30°,BC=4,
∴CD=BC=2,CE=CD=1,DE=CDcos30°=,
∴S陰=S四邊形ODEC﹣S扇形ODC=(1+2)×﹣=﹣.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校開展“青少年科技創(chuàng)新比賽”活動(dòng),“喜洋洋”代表隊(duì)設(shè)計(jì)了一個(gè)遙控車沿直線軌道AC做勻速直線運(yùn)動(dòng)的模型.甲、乙兩車同時(shí)分別從A,B出發(fā),沿軌道到達(dá)C處,在AC上,甲的速度是乙的速度的1.5倍,設(shè)t分后甲、乙兩遙控車與B處的距離分別為d1,d2(單位:米),則d1,d2與t的函數(shù)關(guān)系如圖,試根據(jù)圖象解決下列問題.
(1)填空:乙的速度v2=________米/分;
(2)寫出d1與t的函數(shù)表達(dá)式;
(3)若甲、乙兩遙控車的距離超過10米時(shí)信號(hào)不會(huì)產(chǎn)生相互干擾,試探究什么時(shí)間兩遙控車的信號(hào)不會(huì)產(chǎn)生相互干擾?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電商銷售某品牌手表,其成本為每件80元,售價(jià)為m元(80<m<240).9月份的銷售量為m件,10月份電商對(duì)該手表的售價(jià)做了調(diào)整,在9月份售價(jià)的基礎(chǔ)上打9折銷售,結(jié)果銷售量增加了50件,銷售額增加了5000元.(銷售額=銷售量×售價(jià))
(1)求該電商9月份銷售該品牌手表的銷售單價(jià).
(2)11月11日“雙十一購物節(jié)”,該電商在9月份售價(jià)的基礎(chǔ)上打折促銷(但不虧本),銷售的數(shù)量y(件)與打折的折數(shù)x滿足一次函數(shù)y=-50x+600.問電商打幾折時(shí)利潤(rùn)最大,最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有下列五個(gè)命題:①如果,那么;②內(nèi)錯(cuò)角相等;③垂線段最短;④帶根號(hào)的數(shù)都是無理數(shù);⑤三角形的一個(gè)外角大于任何一個(gè)內(nèi)角.其中真命題的個(gè)數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點(diǎn)A(1,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,3),拋物線的對(duì)稱軸與x軸交于點(diǎn)D.
(1)求二次函數(shù)的表達(dá)式;
(2)在y軸上是否存在一點(diǎn)P,使△PBC為等腰三角形.若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);
(3)有一個(gè)點(diǎn)M從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度在AB上向點(diǎn)B運(yùn)動(dòng),另一個(gè)點(diǎn)N從點(diǎn)D與點(diǎn)M同時(shí)出發(fā),以每秒2個(gè)單位的速度在拋物線的對(duì)稱軸上運(yùn)動(dòng),當(dāng)點(diǎn)M到 達(dá)點(diǎn)B時(shí),點(diǎn)M、N同時(shí)停止運(yùn)動(dòng),問點(diǎn)M、N運(yùn)動(dòng)到何處時(shí),△MNB面積最大,試求出最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道:“兩邊及其中一邊的對(duì)角分別相等的兩個(gè)三角形不一定全等”.但是,小亮發(fā)現(xiàn):當(dāng)這兩個(gè)三角形都是銳角三角形時(shí),它們會(huì)全等,除小亮的發(fā)現(xiàn)之外,當(dāng)這兩個(gè)三角形都是 時(shí),它們也會(huì)全等;當(dāng)這兩個(gè)三角形其中一個(gè)三角形是銳角三角形,另一個(gè)是 時(shí),它們一定不全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的正方形網(wǎng)絡(luò)中,每個(gè)小正方形的邊長(zhǎng)為1,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)絡(luò)的交點(diǎn)的三角形)ABC的頂點(diǎn)A,C的坐標(biāo)分別為(﹣4,5),(﹣1,3).
(1)請(qǐng)?jiān)谌鐖D所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系;
(2)請(qǐng)作出△ABC關(guān)于y軸對(duì)稱的△A1B1C1;
(3)點(diǎn)B關(guān)于x軸的對(duì)稱點(diǎn)B2的坐標(biāo)是 ;
(4)△ABC的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD的對(duì)角線AC將其分割成兩個(gè)三角形:
(1)如圖1.若∠BAC=∠DAC,AB>AD,求證:AB-AD>CB-CD.
(2)如圖2.若∠ACD+∠BAC=180°,∠B=∠D,求證:BC=AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將坐標(biāo)原點(diǎn)O沿x軸向左平移2個(gè)單位長(zhǎng)度得到點(diǎn)A,過點(diǎn)A作y軸的平行線交反比例函數(shù)y=的圖象于點(diǎn)B,AB=.
(1)求反比例函數(shù)的解析式;
(2)若P(x1,y1)、Q(x2,y2)是該反比例函數(shù)圖象上的兩點(diǎn),且x1<x2時(shí),y1>y2,指出點(diǎn)P、Q各位于哪個(gè)象限?并簡(jiǎn)要說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com