如圖,已知矩形ABCD中,CE⊥BD于E,CF平分∠DCE與DB交于點F,F(xiàn)G∥DA與AB交于點G.
求證:(1)BC=BF;(2)GB•DC=DE•BC.

證明:(1)∵∠BFC=∠BDC+∠DCF,∠BCF=∠BCE+∠ECF.四邊形ABCD為矩形.
∴∠BDC=90°-∠DCE=∠BCE.
∵CF平分∠DCE與DB交于點F.
∴∠DCF=∠ECF.
∴∠BFC=∠BCF.
∴BC=BF.

(2)∵四邊形ABCD為矩形.FG∥DA與AB交于點G,CE⊥BD于E.
∴∠DBA=∠CDB,∠CED=∠BGF=90°.
∴△DEC∽△BGF.
∴GB:DE=BF:CD.
∴GB•CD=DE•BF.
∵BC=BF.
∴GB•DC=DE•BC
分析:(1)欲證BC=BF,可證∠BFC=∠BCF.而∠BFC=∠BDC+∠DCF,∠BCF=∠BCE+∠ECF.根據(jù)已知條件可知,∠BDC=90°-∠DCE=BCE,∠DCF=∠ECF.所以∠BFC=∠BCF,從而BC=BF.
(2)欲證GB•DC=DE•BC,由BC=BF,即證GB:DE=BF:DC,即證△GBF∽△EDC即可.
點評:本題主要考查矩形的性質(zhì)及相似三角形的判定和性質(zhì),同時考查了等腰三角形邊角之間的關(guān)系.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知矩形DEFG內(nèi)接于Rt△ABC,D在AB上,E、F在BC上,G在AC上,∠BAC=90°,AB=6cm,AC=8cm,S矩形DEFG=
454
,則矩形的邊長DG=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知矩形ABCD中,AB=12cm,BC=6cm,點M沿AB方向從A向B以2cm/秒的速度移動,點N從D沿DA方向以1c精英家教網(wǎng)m/秒的速度移動,如果M、N兩點同時出發(fā),移動的時間為x秒(0≤x≤6).
(1)當x為何值時,△MAN為等腰直角三角形?
(2)當x為何值時,有△MAN∽△ABC?
(3)愛動腦筋的小紅同學在完成了以上聯(lián)系后,對該問題作了深入的研究,她認為:在M、N的移動過程中(N不與D、A重合,M不與A、B重合),以A、M、C、N為頂點的四邊形面積是一個常數(shù).她的這種想法對嗎?請說出理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知正三角形ABC的邊長AB是480毫米.一質(zhì)點D從點B出發(fā),沿BA方向,以每秒鐘10毫米的速度向精英家教網(wǎng)點A運動.
(1)建立合適的直角坐標系,用運動時間t(秒)表示點D的坐標;
(2)過點D在三角形ABC的內(nèi)部作一個矩形DEFG,其中EF在BC邊上,G在AC邊上.在圖中找出點D,使矩形DEFG是正方形(要求所表達的方式能體現(xiàn)出找點D的過程);
(3)過點D、B、C作平行四邊形,當t為何值時,由點C、B、D、F組成的平行四邊形的面積等于三角形ADC的面積,并求此時點F的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•寧德質(zhì)檢)如圖,已知Rt△ABC,∠B=90°,AB=8,BC=6,把斜邊AC平均分成n段,以每段為對角線作邊與AB、BC平行的小矩形,則這些小矩形的面積和是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知矩形ABCD中AB:BC=3:1,點A、B在x軸上,直線y=mx+n(0<m<n<
1
2
),過點A、C交y軸于點E,S△AOE=
9
8
S矩形ABCD,拋物線y=ax2+bx+c過點A、B,且頂點G在直線y=mx+n上,拋物線與y軸交于點F.
(1)點A的坐標為
(-3n,0)
(-3n,0)
;B的坐標
(-n,0)
(-n,0)
(用n表示);
(2)abc=
-
4
9
-
4
9

查看答案和解析>>

同步練習冊答案