【題目】如圖,已知直線y=﹣x+2與拋物線y=a(x+2)2相交于A、B兩點,點A在y軸上,M為拋物線的頂點.
(1)請直接寫出點A的坐標及該拋物線的解析式;
(2)若P為線段AB上一個動點(A、B兩端點除外),連接PM,設(shè)線段PM的長為,點P的橫坐標為x,請求出與x之間的函數(shù)關(guān)系,并直接寫出自變量x的取值范圍;
(3)在(2)的條件下,線段AB上是否存在點P,使以A、M、P為頂點的三角形是等腰三角形?若存在,求出點P的坐標;若不存在,請說明理由.
【答案】(1)、A(0,2);y=;(2)、;﹣5<x<0;(3)、P1(﹣4,4)、P2(﹣,)、P3(﹣,)
【解析】
試題分析:(1)、根據(jù)一次函數(shù)的交點得出點A的坐標,從而得出拋物線的解析式;(2)、連接PM,過點P作PD⊥x軸于點D,設(shè)P的坐標是(x,﹣x+2),根據(jù)Rt△PDM的勾股定理得出函數(shù)解析式;(3)、首先求出AM=2,然后分PM=PA,PM=AM和PA=AM三種情況列出方程,從而求出x的值,得出點P的坐標.
試題解析:(1)、A的坐標是(0,2) 拋物線的解析式是y=(x+2)2
(2)、如圖,P為線段AB上任意一點,連接PM
過點P作PD⊥x軸于點D 設(shè)P的坐標是(x,﹣x+2),則在Rt△PDM中PM2=DM2+PD2
即l2=(﹣2﹣x)2+(﹣x+2)2=x2+2x+8
P為線段AB上一個動點,故自變量x的取值范圍為:﹣5<x<0,
(3)、存在滿足條件的點P 連接AM,由題意得:AM==2
①當PM=PA時,x2+2x+8=x2+(﹣x+2﹣2)2
解得:x=﹣4 此時y=﹣×(﹣4)+2=4
∴點P1(﹣4,4)
②當PM=AM時,x2+2x+8=(2)2
解得:x1=﹣ x2=0(舍去)
此時y=﹣×(﹣)+2=
∴點P2(﹣,)
③當PA=AM時,x2+(﹣x+2﹣2)2=(2)2
解得:x1=﹣ x2=(舍去)
此時y=﹣×(﹣)+2=
∴點P3(﹣,)
綜上所述,滿足條件的點為:
P1(﹣4,4)、P2(﹣,)、P3(﹣,)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC在平面直角坐標系xOy中,點A在x軸的正半軸上,點C在y軸的正半軸上,OA=4,OC=3,若拋物線的頂點在BC邊上,且拋物線經(jīng)過O,A兩點,直線AC交拋物線于點D.
(1)求拋物線的解析式;
(2)求點D的坐標;
(3)若點M在拋物線上,點N在x軸上,是否存在以A,D,M,N為頂點的四邊形是平行四邊形?若存在,求出點N的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一種面粉的質(zhì)量標識為“26±0.25千克”,則下列面粉中合格的是:( 。
A. 26.30千克 B. 25.70千克 C. 26.51千克 D. 25.80千克
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于平面直角坐標系中的任意兩點P1(x1,y1),P2(x2,y2),我們把|x1﹣x2|+|y1﹣y2|叫做P1、P2兩點間的直角距離,記作d(P1,P2).
(1)令P0(2,﹣3),O為坐標原點,則d(O,P0)= ;
(2)已知O為坐標原點,動點P(x,y)滿足d(O,P)=1,請寫出x與y之間滿足的關(guān)系式,并在所給的直角坐標系中畫出所有符合條件的點P所組成的圖形;
(3)設(shè)P0(x0,y0)是一定點,Q(x,y)是直線y=ax+b上的動點,我們把d(P0,Q)的最小值叫做P0到直線y=ax+b的直角距離. 若P(a,﹣3)到直線y=x+1的直角距離為6,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點A(-3,y1),B(-1,y2),C(2,y3)在拋物線y= x2上,則y1,y2,y3的大小關(guān)系系是__________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道:任意一個有理數(shù)與無理數(shù)的和為無理數(shù),任意一個不為零的有理數(shù)與一個無理數(shù)的積為無理數(shù),而零與無理數(shù)的積為零.由此可得:如果ax+b=0,其中a、b為有理數(shù),x為無理數(shù),那么a=0且b=0.
運用上述知識,解決下列問題:
(1)如果(a-2)+b+3=0,其中a、b為有理數(shù),那么a= ,b= ;
(2)如果(2+)a-(1-)b=5,其中a、b為有理數(shù),求a+2b的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com