【題目】如圖,點(diǎn)是圓上一動(dòng)點(diǎn),弦,是的平分線,.
(1)當(dāng)等于多少度時(shí),四邊形有最大面積?最大面積是多少?
(2)當(dāng)的長(zhǎng)為多少時(shí),四邊形是梯形?說(shuō)明你的理由.
【答案】(1)當(dāng)時(shí),四邊形的面積最大,面積為;(2)當(dāng)或2 時(shí),四邊形為梯形.
【解析】
(1)先求得AC=BC,再根據(jù)已知條件得S四邊形PACB=S△ABC+S△PABS△ABC,當(dāng)S△PAB最大時(shí),四邊形PACB面積最大,求出PC=2,從而計(jì)算出最大面積;
(2)已知四邊形PACB為梯形,分兩種情況:AC∥PB或PA∥BC,求出PA的長(zhǎng).
(1)∵PC平分∠APB,
∴∠APC=∠BPC,
∴AC=BC
由AB=cm,∠BAC=30°,求得AC=BC=1cm,
∵S四邊形PACB=S△ABC+S△PAB,
S△ABC為定值,
當(dāng)S△PAB最大時(shí),四邊形PACB面積最大,
在△PAB中,AB邊不變,其最長(zhǎng)的高為過(guò)圓心O與AB垂直(即AB的中垂線)與圓O交點(diǎn)P,此時(shí)四邊形PACB面積最大.易得△PAB為等邊三角形,PC為圓的直徑,∠PAC=90°,
∵∠APC=∠BAC=30°
∴PC=2AC=2,
∴四邊形PACB的最大面積為(cm2);
(2)若四邊形PACB為梯形,則當(dāng)AC∥PB時(shí)
由(1)知AC=BC=1,∠CAB=∠PBA=30°,
∴PA=BC=1,
當(dāng)PA∥BC時(shí),則∠PAB=∠ABC=30°,
在△PBA中,∠APB=60°,
∴∠ABP=180°-60°-30°=90°,
∴此時(shí)PA為圓的直徑,由(1)知,直徑PA=2,
∴當(dāng)PA=1或2時(shí),四邊形PACB為梯形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,BC=3,BD為對(duì)角線.點(diǎn)P從點(diǎn)B出發(fā),沿線段BA向點(diǎn)A運(yùn)動(dòng),點(diǎn)Q從點(diǎn)D出發(fā),沿線段DB向點(diǎn)B運(yùn)動(dòng),兩點(diǎn)同時(shí)出發(fā),速度都為每秒1個(gè)單位長(zhǎng)度,當(dāng)點(diǎn)P運(yùn)動(dòng)到A時(shí),兩點(diǎn)都停止.設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)是否存在某一時(shí)刻t,使得PQ∥AD?若存在,求出t的值;若不存在,說(shuō)明理由.
(2)設(shè)四邊形BPQC的面積為S,求S與t之間的函數(shù)關(guān)系式.
(3)是否存在某一時(shí)刻t,使得S四邊形BPQC:S矩形ABCD=9:20?若存在,求出t的值;若不存在,則說(shuō)明理由.
(4)是否存在某一時(shí)刻t,使得PQ⊥CQ?若存在,求出t的值;若不存在,則說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了對(duì)甲,乙兩名同學(xué)進(jìn)行學(xué)生會(huì)主席的競(jìng)選考核、召開(kāi)了一次競(jìng)選答辯及民主測(cè)評(píng)會(huì).由A,B,C,D,E五位教師評(píng)委對(duì)競(jìng)選答辯進(jìn)行評(píng)分,并選出20名學(xué)生代表參加民主投票.競(jìng)選答辯的結(jié)果如下表所示:
評(píng)委 得分 選手 | A | B | C | D | E |
甲 | 92 | 88 | 90 | 94 | 96 |
乙 | 84 | 86 | 90 | 93 | 91 |
民主投票的結(jié)果為:甲8票,乙12票.
根據(jù)以上信息解答下列問(wèn)題:
(1)甲,乙兩人的競(jìng)選答辯得分分別是多少?
(2)如果綜合得分=競(jìng)選答辯得分+民主投票得分,那么,甲,乙兩人誰(shuí)當(dāng)選學(xué)生會(huì)主席?
(3)如果綜合得分=競(jìng)選答辯得分民主投票得分,那么,當(dāng)時(shí),甲,乙兩人誰(shuí)當(dāng)選學(xué)生會(huì)主席?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小明在教學(xué)樓A處分別觀測(cè)對(duì)面實(shí)驗(yàn)樓CD底部的俯角為45°,頂部的仰角為37°,已知教學(xué)樓和實(shí)驗(yàn)樓在同一平面上,觀測(cè)點(diǎn)距地面的垂直高度AB為15m,求實(shí)驗(yàn)樓的垂直高度即CD長(zhǎng)(精確到1m).
參考值:sin37°=0.60,cos37°=0.80,tan37°=0.75.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在半圓中,點(diǎn)是圓心,是直徑,點(diǎn)是的中點(diǎn),過(guò)點(diǎn)作的垂線,交的延長(zhǎng)線于點(diǎn)。
(1)求證:是半圓的切線;
(2)若,求的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0,其中正確的個(gè)數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,∠BAD=90°,點(diǎn)E在BC的延長(zhǎng)線上,且∠DEC=∠BAC.
(1)求證:DE是⊙O的切線;
(2)若AC∥DE,當(dāng)AB=8,CE=2時(shí),求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上.
(1)把△ABC向上平移5個(gè)單位后得到對(duì)應(yīng)的△A1B1C1,畫出△A1B1C1;
(2)畫出與△ABC關(guān)于原點(diǎn)O對(duì)稱的△A2B2C2;
(3)△A1B1C1與△A2B2C2關(guān)于某個(gè)點(diǎn)對(duì)稱,則這個(gè)點(diǎn)的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,的三個(gè)頂點(diǎn)坐標(biāo)分別為,,(每個(gè)方格的邊長(zhǎng)均為1個(gè)單位長(zhǎng)度).
(1)將平移,使點(diǎn)移動(dòng)到點(diǎn),請(qǐng)畫出;
(2)作出關(guān)于點(diǎn)成中心對(duì)稱的,并直接寫出,,的坐標(biāo);
(3)與是否成中心對(duì)稱?若是,請(qǐng)寫出對(duì)稱中心的坐標(biāo);若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com