【題目】鹽城電視塔是我市標志性建筑之一.如圖,在一次數(shù)學課外實踐活動中,老師要求測電視塔的高度AB.小明在D處用高1.5 m的測角儀CD,測得電視塔頂端A的仰角為30°,然后向電視塔前進224 m到達E處,又測得電視塔頂端A的仰角為60°.求電視塔的高度AB.( 取1.73,結果精確到0.1 m)

【答案】電視塔的高度AB約為195.3 m.

【解析】

試題分析:本題主要考查三角函數(shù),AG=x,分別在RtACGRtRtAFG

AGx,根據(jù)正切三角函數(shù)公式,x表示出CG,FG的長度,根據(jù)DE=224m列出方程,解方程可求出x的值,從而求出AB的長.

Rt△AFG,∵tan∠AFG,∴FG,

Rt△ACG,∵tan∠ACG,

CGx,

x=224,解得x≈193.8,

AB=193.8+1.5=195.3(m),

答:電視塔的高度AB約為195.3 m.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖點 A B 分別在反比例函數(shù)上,OA OB ,連接 AB 交于點C ,若C AB 中點,則 SOAB =_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),拋物線與y軸交于點A,E(0,b)為y軸上一動點,過點E的直線與拋物線交于點B、C .

(1)則點A的坐標是 ______ ;

(2)當b = 0時(如圖(2)),△ABE與△ACE的面積大小關系如何?當時,上述關系還成立嗎,為什么?

(3)是否存在這樣的b,使得△BOC是以BC 為斜邊的直角三角形,若存在,求出b;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的一條弦,OD⊥AB,垂足為點C,交⊙O于點D,點E在⊙O上.

(1)若∠AOD=52°,求∠DEB的度數(shù);

(2)若OC=3,OA=6,求tan∠DEB的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以△ABC的BC邊上一點O為圓心,經(jīng)過A,C兩點且與BC邊交于點E,點D為CE的下半圓弧的中點,連接AD交線段EO于點F,若AB=BF.

(1)求證:AB是O的切線;

(2)若CF=4,DF=,求⊙O的半徑r及sinB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】化簡求值:

(1),其中a=-2 。

(2)

(3),其中

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,,,點上,于點,于點,當時,________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市健益超市購進一批元/千克的綠色食品,如果以元/千克銷售,那么每天可售出千克.由銷售經(jīng)驗知,每天銷售量(千克)與銷售單價(元)()存在如下圖所示的一次函數(shù)關系.

(1)試求出yx的函數(shù)關系式;

(2)設健益超市銷售該綠色食品每天獲得利潤p元,當銷售單價為何值時,每天可獲得 最大利潤?最大利潤是多少?

(3)根據(jù)市場調(diào)查,該綠色食品每天可獲利潤不超過4480元,現(xiàn)該超市經(jīng)理要求每天利潤不得低于4180元,請你幫助該超市確定綠色食品銷售單價x的范圍(直接寫出).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的袋子中裝有4個質(zhì)地、大小均相同的小球,這些小球上分別標有數(shù)字3、4、5、x.甲、乙兩人每次從袋中各隨機摸出1球,并計算摸出這2個小球上數(shù)字之和,記錄后都將放回袋中攪勻,進行重復實驗.實驗數(shù)據(jù)如下表:

摸球總次數(shù)

10

20

30

60

90

120

180

240

330

450

和為8”出現(xiàn)頻數(shù)

2

10

13

24

30

37

58

82

110

150

和為8”出現(xiàn)頻率

0.20

0.50

0.43

0.40

0.33

0.31

0.32

0.34

0.33

0.33

解答下列問題:

(1)如果實驗繼續(xù)進行下去,根據(jù)上表數(shù)據(jù),出現(xiàn)和為8”頻率將穩(wěn)定在它概率附近.估計

出現(xiàn)和為8”概率是________

0.33

(2)如果摸出的這兩個小球上數(shù)字之和為9概是,那么x值可以取7嗎?請用列表法或畫樹狀圖法說明理由;如果x值不可以取7,請寫出一個符合要求x值.

查看答案和解析>>

同步練習冊答案