【題目】某市健益超市購進(jìn)一批元/千克的綠色食品,如果以元/千克銷售,那么每天可售出千克.由銷售經(jīng)驗知,每天銷售量(千克)與銷售單價(元)()存在如下圖所示的一次函數(shù)關(guān)系.

(1)試求出yx的函數(shù)關(guān)系式;

(2)設(shè)健益超市銷售該綠色食品每天獲得利潤p元,當(dāng)銷售單價為何值時,每天可獲得 最大利潤?最大利潤是多少?

(3)根據(jù)市場調(diào)查,該綠色食品每天可獲利潤不超過4480元,現(xiàn)該超市經(jīng)理要求每天利潤不得低于4180元,請你幫助該超市確定綠色食品銷售單價x的范圍(直接寫出).

【答案】(1)(30≤x≤50);

(2)當(dāng)銷售單價為35/千克時,每天可獲得最大利潤4500元;

(3)31≤x≤3436≤x≤39.

【解析】試題(1)設(shè)一次函數(shù)解析式為y=kx+b,然后根據(jù)圖象找出直線上兩點的坐標(biāo)當(dāng)然其中,得到關(guān)于k、b的方程組,由此即可求解;

(2)由于為成本價20/千克,銷售量為y(千克),銷售單價為x,根據(jù)利潤=銷售量×(售價-成本價)即可求解;

(3)利用(2)的函數(shù)解析式即可得到關(guān)于x的一元二次方程,解方程即可求解.

試題解析:(1)設(shè),

由圖象可知,,

解得

(2)由題意得

a=-20<0,p有最大值.

當(dāng)x=-1400/2×(-20)=35時,p最大值=4500.

即當(dāng)銷售單價為35/千克時,每天可獲得最大利潤4500元.

(3)當(dāng)P=4420,4420=20x2+1400x20000,

解得x1=33,x2=37,

當(dāng)P=4180,4180=20x2+1400x20000,

解得 x1=31,x2=39,

∴綠色食品銷售單價為31x33,37x39的范圍時符合要求.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,并解爺其后的問題:

我們知道,三角形的中位線平行于第一邊,且等于第三邊的一半,我們還知道,三角形的三條中位線可以將三角形分成四個全等的一角形,如圖1,若DE、F分別是三邊的中點,則有,且

1)在圖1中,若的面積為15,則的面積為___________

2)在圖2中,已知E、FG、H分別是ABBC、CD、AD的中點,求證:四邊形EFGH是平行四邊形;

3)如圖3中,已知EF、G、H分別是ABBC、CDAD的中點,,則四邊形EFGH的面積為___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方形ABCD中,AB=CD=5厘米,AD=BC=4厘米.動點PA出發(fā),以1厘米/秒的速度沿A→B運動,到B點停止運動;同時點QC點出發(fā),以2厘米/秒的速度沿C→B→A運動,到A點停止運動.設(shè)P點運動的時間為t秒(t0),

1)當(dāng)點QBC邊上運動時,t為何值,AP=BQ;

2)當(dāng)t為何值時,SADP=SBQD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一副三角板中的兩塊直角板中的兩個直角頂點重合在一起,即按如圖所示的方式疊放在一起,其中∠A60°,∠B30,∠D45°.

1)若∠BCD45°,求∠ACE的度數(shù).

2)若∠ACE150°,求∠BCD的度數(shù).

3)由(1)、(2)猜想∠ACE與∠BCD存在什么樣的數(shù)量關(guān)系并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形ABCD中,BE、CE分別平分∠ABC和∠DCB,點EAD上,①△ABE≌△DCE;②△ABE和△DCE都是等腰直角三角形;③AE=DE;④△BCE是等邊三角形,以上結(jié)論正確的有( )

A.1B.2C.4D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:

材料1、若一元二次方程ax2+bx+c=0(a≠0)的兩根為x1,x2,則x1+x2=,x1x2=

材料2、已知實數(shù)m、n滿足m2﹣m﹣1=0,n2﹣n﹣1=0,且m≠n,求的值.

解:由題知m、n是方程x2﹣x﹣1=0的兩個不相等的實數(shù)根,根據(jù)材料1

m+n=1,mn=﹣1

根據(jù)上述材料解決下面問題;

(1)一元二次方程2x2+3x﹣1=0的兩根為x1、x2,則x1+x2=   ,x1x2=   

(2)已知實數(shù)m、n滿足2m2﹣2m﹣1=0,2n2﹣2n﹣1=0,且m≠n,求m2n+mn2的值.

(3)已知實數(shù)p、q滿足p2=3p+2,2q2=3q+1,且p≠2q,求p2+4q2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某書店開展優(yōu)惠售書活動,一次購書定價不超過200元的打九折;一次購書定價超過200元的,其中200元按九折計算,超過200元的部分打八折.小麗挑選了幾本喜愛的書,計算定價后,準(zhǔn)備支付144元,遇見同學(xué)小芳也在買書,計算小芳購書的定價后,小麗對小芳說:我們獨自付款,都只能享受九折,合在一-起付款,按今天的活動一共可優(yōu)惠 48元.請根據(jù)以上內(nèi)容解答下列問題:

1)小麗購書的定價是____

2)列方程求解小芳購書的定價.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,,點在邊上(與、不重合),四邊形為正方形,過點,交的延長線于點,連接,交于點,對于下列結(jié)論:①;②四邊形是矩形;③.其中正確的是(

A.①②③B.①②C.①③D.②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠?/span>

1 2

3 4

5

查看答案和解析>>

同步練習(xí)冊答案