已知,△ABC中,AC=BC,∠ACB=90°,D為AB的中點(diǎn),若E在直線AC上任意一點(diǎn),DF⊥DE,交直線BC于F點(diǎn).G為EF的中點(diǎn),延長(zhǎng)CG交AB于點(diǎn)H.
(1)若E在邊AC上.①試說(shuō)明DE=DF;②試說(shuō)明CG=GH;

(2)若AE=3,CH=5.求邊AC的長(zhǎng).

解:(1)①連接CD,

∵∠ACB=90°,D為AB的中點(diǎn),AC=BC,

∴CD=AD=BD,

又∵AC=BC,

∴CD⊥AB,

∴∠EDA+∠EDC=90°,∠DCF=∠DAE=45°,

∵DF⊥DE,

∴∠EDF=∠EDC+∠CDF=90°,

∴∠ADE=∠CDF,

在△ADE和△CDF中

∴△ADE≌△CDF,

∴DE=DF.

②連接DG,

∵∠ACB=90°,G為EF的中點(diǎn),

∴CG=EG=FG,

∵∠EDF=90°,G為EF的中點(diǎn),

∴DG=EG=FG,

∴CG=DG,

∴∠GCD=∠CDG

又∵CD⊥AB,

∴∠CDH=90°,

∴∠GHD+∠GCD=90°,∠HDG+∠GDC=90°,

∴∠GHD=∠HDG,

∴GH=GD,

∴CG=GH.

(2)如圖,當(dāng)E在線段AC上時(shí),

∵CG=GH=EG=GF,

∴CH=EF=5,

∵△ADE≌△CDF,

∴AE=CF=3,

∴在Rt△ECF中,由勾股定理得:,

∴AC=AE+EC=3+4=7;

如圖,當(dāng)E在線段CA延長(zhǎng)線時(shí),

AC=EC﹣AE=4﹣3=1,

綜合上述AC=7或1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知Rt△ABC中,∠ACB=90°,BC=5,tan∠A=
3
4
,現(xiàn)將△ABC繞著點(diǎn)C逆時(shí)針旋轉(zhuǎn)α(45°<α<135°)得到△DCE,設(shè)直線DE與直線AB相交于點(diǎn)P,連接CP.
精英家教網(wǎng)
(1)當(dāng)CD⊥AB時(shí)(如圖1),求證:PC平分∠EPA;
(2)當(dāng)點(diǎn)P在邊AB上時(shí)(如圖2),求證:PE+PB=6;
(3)在△ABC旋轉(zhuǎn)過(guò)程中,連接BE,當(dāng)△BCE的面積為
25
4
3
時(shí),求∠BPE的度數(shù)及PB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,已知在△ABC中,AB=AC,∠BAD=β,且AD=AE,求∠EDC.(用β表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

8、如圖,已知在△ABC中,AD垂直平分BC,AC=EC,點(diǎn)B、D、C、E在同一直線上,則下列結(jié)論:①AB=AC;②∠CAE=∠E;③AB+BD=DE;④∠BAC=∠ACB.正確的個(gè)數(shù)有( 。﹤(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知在△ABC中,有一個(gè)角為60°,S△ABC=10
3
,周長(zhǎng)為20,則三邊長(zhǎng)分別為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知在△ABC中,點(diǎn)D、E分別是AB、AC上的點(diǎn),以AE為直徑的⊙O與過(guò)B點(diǎn)的⊙P精英家教網(wǎng)外切于點(diǎn)D,若AC和BC邊的長(zhǎng)是關(guān)于x的方程x2-(AB+4)x+4AB+8=0的兩根,且25BC•sinA=9AB,
(1)求△ABC三邊的長(zhǎng);
(2)求證:BC是⊙P的切線;
(3)若⊙O的半徑為3,求⊙P的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案