【題目】如圖,三角形ABC三邊的長(zhǎng)分別為ABm2n2,AC2mn,BCm2+n2,其中m、n都是正整數(shù).以AB、AC、BC為邊分別向外畫正方形,面積分別為S1、S2S3,那么S1S2、S3之間的數(shù)量關(guān)系為_____

【答案】S1+S2S3

【解析】

首先利用勾股定理的逆定理判定△ABC是直角三角形,設(shè)RtABC的三邊分別為ab、c,再分別用a、b、c表示S1、S2S3的值,由勾股定理即可得出S1、S2、S3之間的數(shù)量關(guān)系.

解:∵AB=m2-n2,AC=2mn,BC=m2+n2,
AB2+AC2=BC2,
∴△ABC是直角三角形,
設(shè)RtABC的三邊分別為ab、c,
S1=c2,S2=b2,S3=a2
∵△ABC是直角三角形,
b2+c2=a2,即S1+S2=S3
故答案為:S1+S2=S3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由大小相同(棱長(zhǎng)為1分米)的小立方塊搭成的幾何體如下圖.

(1)請(qǐng)?jiān)谟覉D的方格中畫出該幾何體的俯視圖和左視圖;

(2)圖中有 塊小正方體,它的表面積(含下底面)為

(3)用小立方體搭一幾何體,使得它的俯視圖和左視圖與你在上圖方格中所畫的圖一致,則這樣的幾何體最少要_______個(gè)小立方塊,最多要_______個(gè)小立方塊.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,飛機(jī)在一定高度上沿水平直線飛行,先在點(diǎn)處測(cè)得正前方小島的俯角為,面向小島方向繼續(xù)飛行到達(dá)處,發(fā)現(xiàn)小島在其正后方,此時(shí)測(cè)得小島的俯角為.如果小島高度忽略不計(jì),求飛機(jī)飛行的高度(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,ACB=90°,tanBAC=. 點(diǎn)D在邊AC上(不與A,C重合),連結(jié)BD,FBD中點(diǎn).

1)若過點(diǎn)DDEABE,連結(jié)CFEF、CE,如圖1.設(shè),則k= ;

2)若將圖1中的ADE繞點(diǎn)A旋轉(zhuǎn),使得D、E、B三點(diǎn)共線,點(diǎn)F仍為BD中點(diǎn),如圖2所示.求證:BE-DE=2CF;

3)若BC=6,點(diǎn)D在邊AC的三等分點(diǎn)處,將線段AD繞點(diǎn)A旋轉(zhuǎn),點(diǎn)F始終為BD中點(diǎn),求線段CF長(zhǎng)度的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】雙蓉服裝店老板到廠家購A、B兩種型號(hào)的服裝,若購A種型號(hào)服裝6件,B種型號(hào)服裝16件,需要1260元;若購進(jìn)A種型號(hào)服裝12件,B種型號(hào)服裝8件,需要1080元。

1)求A、B兩種型號(hào)的服裝每件分別為多少元?

2)若銷售一件A型服裝可獲利20元,銷售一件B型服裝可獲利30元,根據(jù)市場(chǎng)需要,服裝店老板決定:購進(jìn)A型服裝的數(shù)量要比購進(jìn)B型服裝的數(shù)量的2倍還多4件,且A型服裝最多可購進(jìn)28件,這樣服裝全部售出后可使總的獲利不少于780元,問有幾種進(jìn)貨方案?如何進(jìn)貨?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了增強(qiáng)學(xué)生體質(zhì),決定開設(shè)以下體育課外活動(dòng)項(xiàng)目:A.籃球 B.乒乓球C.羽毛球 D.足球,為了解學(xué)生最喜歡哪一種活動(dòng)項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)圖,

請(qǐng)回答下列問題:

1)這次被調(diào)查的學(xué)生共有多少人?

2)請(qǐng)你將條形統(tǒng)計(jì)圖(2)補(bǔ)充完整;

3)在平時(shí)的乒乓球項(xiàng)目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹狀圖或列表法解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,用三種大小不同的5個(gè)正方形和一個(gè)長(zhǎng)方形(陰影部分)拼成長(zhǎng)方形ABCD,其中EF=2厘米,最小的正方形的邊長(zhǎng)為x厘米.

1)用含x的代數(shù)式表示FG=________厘米,DG=________厘米.

2)若長(zhǎng)方形ABCD的周長(zhǎng)等于52,求x的值

3)若FGDG=23,求四邊形FGDH(陰影部分)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù) y=kx+b 的圖像如圖所示,則當(dāng)kx+b>0 時(shí),x 的取值范圍為___________.

【答案】x>1

【解析】分析:題目要求 kx+b>0,即一次函數(shù)的圖像在x 軸上方時(shí),觀察圖象即可得x的取值范圍.

詳解:

∵kx+b>0,

一次函數(shù)的圖像在x 軸上方時(shí),

∴x的取值范圍為:x>1.

故答案為:x>1.

點(diǎn)睛:本題考查了一次函數(shù)與一元一次不等式的關(guān)系,主要考查學(xué)生的觀察視圖能力.

型】填空
結(jié)束】
16

【題目】菱形ABCD中, ,其周長(zhǎng)為32,則菱形面積為____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面上有四個(gè)點(diǎn)A、B、C、D,請(qǐng)用直尺按下列要求作圖:

1)作直線AB;

2)作射線BC;

3)連接AD,并將其反向延長(zhǎng)至E,使DE2AD;

4)找到一點(diǎn)F,使點(diǎn)FA、B、C、D四點(diǎn)的距離之和最短.

查看答案和解析>>

同步練習(xí)冊(cè)答案