【題目】已知拋物線與軸只有一個公共點,且與軸交于點
(1)試判斷該拋物線的開口方向,說明理由;
(2)若,軸交該拋物線于點,且是直角三角形,求拋物線的解析式;
(3)若直線()與該拋物線有兩個交點,且與軸和軸分別交于點,記的面積為,求的取值范圍
【答案】(1)開口向上;(2)y= ;(3)
【解析】
(1)根據(jù)二次函數(shù)與一元二次方程的關系,可得到方程的判別式為0,從而得解;
(2)將含有字母系數(shù)的解析式化為頂點式,得到點, B(0,2),,在中證得BD=CD=AD從而求得b的值,即可得出函數(shù)解析式;
(3)聯(lián)立方程組并化為一元二次方程,根據(jù)有2個交點得到判別式大于0,由此可確定b的取值范圍,進一步得到用含b的式子表示的面積表達式,因此可得到的取值范圍.
解:(1),y=0時,
∵與x軸只有一個公共點A
∴開口向上;
(2)如圖,
,
∴
與y軸交點B(0,2),
在中,,
B,C關于AD對稱,即BD=CD=AD,
(3)如圖
∵與該拋物線有兩個交點,
∵x=0時,
y=0時,,
∴,
設
m=1時,S最小值是,m>1時,S隨著m的增大而增大,
科目:初中數(shù)學 來源: 題型:
【題目】某旅游景點的年游客量y(萬人)是門票價格x(元)的一次函數(shù),其函數(shù)圖像如下圖.
(1)求y關于x的函數(shù)解析式;
(2)經(jīng)過景點工作人員統(tǒng)計發(fā)現(xiàn):每賣出一張門票所需成本為20元.那么要想獲得年利潤11500萬元,且門票價格不得高于230元,該年的門票價格應該定為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】愛好數(shù)學的甲、乙兩個同學做了一個數(shù)字游戲:拿出三張正面寫有數(shù)字﹣1,0,1且背面完全相同的卡片,將這三張卡片背面朝上洗勻后,甲先隨機抽取一張,將所得數(shù)字作為p的值,然后將卡片放回并洗勻,乙再從這三張卡片中隨機抽取一張,將所得數(shù)字作為q值,兩次結(jié)果記為.
(1)請你幫他們用樹狀圖或列表法表示所有可能出現(xiàn)的結(jié)果;
(2)求滿足關于x的方程沒有實數(shù)根的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的頂點坐標分別為A(-2,-4),B(0,-4),C(1,-1).
(1)畫出△ABC關于點O的中心對稱圖形△A1B1C1.
(2)畫出△ABC繞原點O逆時針旋轉(zhuǎn)90°的△A2B2C2,直接寫出點C2的坐標為 .
(3)若△ABC內(nèi)一點P(m,n)繞原點O逆時針旋轉(zhuǎn)90°的對應點為Q,則Q的坐標為 .(用含m,n的式子表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O中,BC為直徑,A為弧BC的中點,點D在弧AC上,BD與AC相交于M,若CD=1,BC=,則DM的長是(。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AB=20cm,BC=15cm,動點P從點A出發(fā),以每秒4cm的速度沿AB方向運動,到達點B時停止運動.過點P作AB的垂線交斜邊AC于點E,將△APE繞點P順時針旋轉(zhuǎn)90°得到△DPF.設點P在邊AB上運動的時間為t(秒).
(1)當點F與點B重合時,求t的值;
(2)當△DPF與△ABC重疊部分的圖形為四邊形時,設此四邊形的面積為S,求S與t的函數(shù)關系式;
(3)若點M是DF的中點,當點M恰好在Rt△ABC的內(nèi)角角平分線上時,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的方程
(1)求證:不論k取什么實數(shù)值,這個方程總有實數(shù)根;
(2)若等腰三角形ABC的一邊長為,另兩邊的長b、c恰好是這個方程的兩個根,求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一次函數(shù)的圖象與反比例函數(shù)的圖象交于點,且與軸交于點;點在反比例函數(shù)的圖象上,以點為圓心,半徑為的作圓與軸,軸分別相切于點、.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)請連結(jié),并求出的面積;
(3)直接寫出當時,的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com