【題目】如圖,已知拋物線經(jīng)過點(diǎn)A(﹣1,0),B30),C0,3)三點(diǎn).

1)求拋物線的解析式;

2)點(diǎn)M是線段BC上的點(diǎn)(不與B、C重合),過MNMy軸交拋物線于N,若點(diǎn)M的橫坐標(biāo)為m,請用含m的代數(shù)式表示MN的長;

3)在(2)的條件下,連接NBNC,是否存在點(diǎn)m,使△BNC的面積最大?若存在,求m的值和△BNC的面積;若不存在,說明理由

【答案】1)拋物線的解析式:y=x2+2x+3;(2MN=m2+3m0m3);(3)存在,當(dāng)m=時,△BNC的面積最大為

【解析】

1)已知了拋物線上的三個點(diǎn)的坐標(biāo),直接利用待定系數(shù)法即可求出拋物線的解析式.
2)先利用待定系數(shù)法求出直線BC的解析式,已知點(diǎn)M的橫坐標(biāo),代入直線BC、拋物線的解析式中,可得到M、N點(diǎn)的坐標(biāo),NM縱坐標(biāo)的差的絕對值即為MN的長.
3)設(shè)MNx軸于D,那么的面積可表示為:,MN的表達(dá)式在(2)中已求得,OB的長易知,由此列出關(guān)于 的函數(shù)關(guān)系式,即可得出結(jié)論.

解:

(1)設(shè)

,,

,

(2)設(shè)直線BC的解析式為

,

,

,

已知點(diǎn)M的橫坐標(biāo)為

,

,

(3)


如圖可知:

=

∴當(dāng),的面積最大,最大值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在平面直角坐標(biāo)系xOy中,對稱軸為直線x = -2的拋物線經(jīng)過點(diǎn)C(02),與x軸交于A(-3,0)、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)).

(1)求這條拋物線的表達(dá)式.

(2)連接BC,求∠BCO的余切值.

(3)如果過點(diǎn)C的直線,交x軸于點(diǎn)E,交拋物線于點(diǎn)P,且∠CEO =BCO,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等腰三角形,且AC=BC,∠ACB=120°,在AB上取一點(diǎn)O,使OB=OC,以點(diǎn)O為圓心,OB為半徑作圓,過點(diǎn)C作CD∥AB交⊙O于點(diǎn)D,連接BD.

(1)猜想AC與⊙O的位置關(guān)系,并證明你的猜想;

(2)試判斷四邊形BOCD的形狀,并證明你的判斷;

(3)已知AC=6,求扇形OBC所圍成的圓錐的底面圓的半徑r.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD,ACBD交于點(diǎn)E,ADB=ACB.

(1)求證:

(2)若ABAC,AE:EC=1:2,F(xiàn)BC中點(diǎn),求證:四邊形ABFD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)興趣小組為測量如圖(①所示的一段古城墻的高度,設(shè)計用平面鏡測量的示意圖如圖②所示,點(diǎn)P處放一水平的平面鏡,光線從點(diǎn)A出發(fā)經(jīng)過平面鏡反射后剛好射到古城墻CD的頂端C處。

1)已知ABBD、CDBD,且測得AB=1.2m,BP=1.8m.PD=12m,求該城墻的高度(平面鏡的原度忽略不計):

2)請你設(shè)計一個測量這段古城墻高度的方案。

要求:①面出示意圖(不要求寫畫法);②寫出方案,給出簡要的計算過程:③給出的方案不能用到圖②的方法。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A4,2)、Bn,﹣4)是一次函數(shù)ykx+b圖象與反比例函數(shù)圖象的兩個交點(diǎn).

1)求此反比例函數(shù)和一次函數(shù)的解析式;

2)直接寫出AOB的面積;

3)根據(jù)圖象直接寫出使一次函數(shù)的值小于反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠C90°,以斜邊AB為邊向外作正方形ABDE,且正方形對角線交于點(diǎn)O,連接OC,已知AC3,OC6,則另一直角邊BC的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,且ABAC,延長BC至點(diǎn)D,使CDCA,連接AD交⊙O與點(diǎn)E,連接BE,CE.

(1)求證:ABE≌△CDE

(2)填空:

①當(dāng)∠ABC的度數(shù)為______時,四邊形AOCE是菱形;

②若AE,AB2,則DE的長為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一些半徑相同的小圓按如圖的規(guī)律擺放,第1個圖形有4個小圓,第2個圖形有8個小圓,第3個圖形有14個小圓,,依次規(guī)律,第8個圖形的小圓個數(shù)是( 。

A.58B.66C.74D.80

查看答案和解析>>

同步練習(xí)冊答案