【題目】如圖,已知OM,ON分別是∠BOC和∠AOC的角平分線,∠AOB=86°,(1)∠MON=______(度);(2)當(dāng)OC在∠AOB內(nèi)繞點(diǎn)O轉(zhuǎn)動時,∠MON的值______改變(填“會”或“不會”).
【答案】43 不會
【解析】
(1)根據(jù)角平分線的定義,及角的和差找到∠MON與∠AOB之間的關(guān)系即可求解;
(2)求出∠MON與∠AOB的倍數(shù)關(guān)系即可說明問題.
(1)∵OM,ON分別是∠BOC和∠AOC的角平分線,
∴∠MOC=∠OBC,∠NOC=∠AOC.
∴∠MON=∠MOC+∠NOC
=∠OBC+∠AOC
=(∠OBC+∠AOC)
=∠AOB=×86°=43°.
(2)有(1)可知∠MON=∠AOB,即∠MON的度數(shù)始終等于∠AOB度數(shù)的一半,所以當(dāng)OC在∠AOB內(nèi)繞點(diǎn)O轉(zhuǎn)動時,∠MON的值不會改變.
故答案是:43,不會.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,∠ABC=60°,點(diǎn)E、F分別在CD、BC的延長線上,AE∥BD,EF⊥BF,垂足為點(diǎn)F,DF=2.
(1)求證:D是EC中點(diǎn);
(2)求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如何求tan75°的值?按下列方法作圖可解決問題.如圖,在Rt△ABC中,AC=k,∠ACB=90°,∠ABC=30°,延長CB至點(diǎn)M,在射線BM上截取線段BD,使BD=AB,連接AD.連接此圖可求得tan75°的值為( )
A.2-
B.2+
C.1+
D.
-1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB=12cm,點(diǎn)C在線段AB上,AC=3BC,動點(diǎn)P從點(diǎn)A出發(fā),以4cm/s的速度向右運(yùn)動,到達(dá)點(diǎn)B之后立即返回,以4cm/s的速度向左運(yùn)動;動點(diǎn)Q從點(diǎn)C出發(fā),以1cm/s的速度向右運(yùn)動,到達(dá)點(diǎn)B之后立即返回,以1cm/s的速度向左運(yùn)動.設(shè)它們同時出發(fā),運(yùn)動時間為t秒,當(dāng)?shù)诙沃睾蠒r,P、Q兩點(diǎn)停止運(yùn)動.
(1)AC=______cm,BC=______cm;
(2)當(dāng)t=______秒時,點(diǎn)P與點(diǎn)Q第一次重合;當(dāng)t=______秒時,點(diǎn)P與點(diǎn)Q第二次重合;
(3)當(dāng)t為何值時,AP=PQ?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在杭州西湖風(fēng)景游船處,如圖,在離水面高度為5m的岸上,有人用繩子拉船靠岸,開始時繩子BC的長為13m,此人以0.5m/s的速度收繩.10s后船移動到點(diǎn)D的位置,問船向岸邊移動了多少m?(假設(shè)繩子是直的,結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市銷售甲、乙兩種商品,現(xiàn)有如下信息:
信息1:甲、乙兩種進(jìn)貨單價之和是3元;
信息2:甲商品零售價比進(jìn)貨價多1元,乙商品零售價比進(jìn)貨價的2倍少1元;
信息3:按零售單價購買甲商品4件和乙商品3件,共付了17元.
請根據(jù)以上信息,求甲乙兩種商品的零售單價?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某屆世界杯的小組比賽規(guī)則:四個球隊(duì)進(jìn)行單循環(huán)比賽(每兩隊(duì)賽一場),勝一場得3分,平一場得1分,負(fù)一場得0分.某小組比賽結(jié)束后,甲、乙、丙、丁四隊(duì)分別獲得第一、二、三、四名,各隊(duì)的總得分恰好是四個連續(xù)奇數(shù),則與乙打平的球隊(duì)是( )
A. 甲 B. 甲與丁 C. 丙 D. 丙與丁
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù) 的圖像經(jīng)過點(diǎn) .
(1)求這個二次函數(shù)的函數(shù)解析式;
(2)若拋物線交x軸于A,B兩點(diǎn),交y軸于C點(diǎn),頂點(diǎn)為D,求以A、B、C、D為頂點(diǎn)的四邊形面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,AB=6,AN=2,∠BAC的平分線交BC于點(diǎn)D,M是AD上的動點(diǎn),則BM+MN的最小值是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com