【題目】在矩形紙片ABCD中,AB=6,BC=8.
(1)將矩形紙片沿BD折疊,點(diǎn)A落在點(diǎn)E處(如圖①),設(shè)DE與BC相交于點(diǎn)F,求BF的長(zhǎng);
(2)將矩形紙片折疊,使點(diǎn)B與點(diǎn)D重合(如圖②),求折痕GH的長(zhǎng).
【答案】(1)
(2)
【解析】
(1)根據(jù)折疊的性質(zhì)可得∠ADB=∠EDB,再根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠ADB=∠DBC,然后求出∠FBD=∠FDB,根據(jù)等角對(duì)等邊可得BF=DF,設(shè)BF=x,表示出CF,在Rt△CDF中,利用勾股定理列出方程求解即可;
(2)根據(jù)折疊的性質(zhì)可得DH=BH,設(shè)BH=DH=x,表示出CH,然后在Rt△CDH中,利用勾股定理列出方程求出x,再連接BD、BG,根據(jù)翻折的性質(zhì)可得
(1) 由折疊得,∠ADB=∠EDB,
∵矩形ABCD的對(duì)邊AD∥BC,
∴∠ADB=∠DBC,
∴∠FBD=∠FDB,
∴BF=DF,
設(shè)BF=x,則CF=8x,
在Rt△CDF中,
即
解得x=
故答案:
(2)由折疊得,DH=BH,設(shè)BH=DH=x,
則CH=8x,
在Rt△CDH中,
即
解得x=
連接BD、BG,
由翻折的性質(zhì)可得,BG=DG,∠BHG=∠DHG,
∵矩形ABCD的邊AD∥BC,
∴∠BHG=∠DGH,
∴∠DHG=∠DGH,
∴DH=DG,
∴BH=DH=DG=BG,
∴四邊形BHDG是菱形,
在Rt△BCD中,
S菱形BHDG=BDGH=BHCD,
即×10GH=×6,解得GH=.
故答案:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊三角形ABC沿邊AB方向平移到△BDE的位置,則圖中∠CBE=_____,連接CE后,線段CE與AD的關(guān)系是______,△BEC為____三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:點(diǎn)D,E分別是△ABC的BC,AC邊的中點(diǎn).
(1)如圖①,若AB=10,求DE的長(zhǎng);
(2)如圖②,點(diǎn)F是AB邊上的一點(diǎn),FG//AD,交ED的延長(zhǎng)線于點(diǎn)G.求證:AF=DG
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是一個(gè)由若干同樣大小的正方體搭成的幾何體俯視圖,小正方形中的數(shù)字表示在該位置的立方體的個(gè)數(shù).
(1)請(qǐng)你畫(huà)出它的從正面看和從左面看的形狀圖.
(2)如果每個(gè)立方體的棱長(zhǎng)為2cm,則該幾何體的表面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料并解決問(wèn)題:
求1+2+22+23+…...+22014的值,另S=1+2+22+23+…...+22014,
等式兩邊同時(shí)乘2,得2S=2+22+23+.......+22014+22015
兩式相減,得2S - S = 22015 -1 所以S = 22015 - 1
依據(jù)以上計(jì)算方法,計(jì)算:1 + 3 + 32 + ..... + 32019
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知反比例函數(shù)和一次函數(shù)的圖象都經(jīng)過(guò)點(diǎn)P(m,-3m).
(1)求點(diǎn)P的坐標(biāo)和一次函數(shù)的解析式;
(2)若點(diǎn)M(a,y1)和點(diǎn)N(a+1,y2)(a>0)都在反比例函數(shù)的圖象上,試通過(guò)計(jì)算或利用反比例的性質(zhì),說(shuō)明y1與y2的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算題:
(1)8+(-10)+(-2)-(-5)
(2)
(3)
(4)-
(5)
(6)
(7)()×4
(8)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(8分)如圖,⊙O是△ABC的外接圓,AB為直徑,OD∥BC交⊙O于點(diǎn)D,交AC于點(diǎn)E,連接AD,BD,CD.
(1)求證:E為AC中點(diǎn);
(2)求證:AD=CD;
(3)若AB=10,cos∠ABC=,求tan∠DBC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(閱讀理解)
點(diǎn)A、B、C為數(shù)軸上三點(diǎn),如果點(diǎn)C在A、B之間且到A的距離是點(diǎn)C到B的距離3倍,那么我們就稱點(diǎn)C是{A,B}的奇點(diǎn).
例如,如圖1,點(diǎn)A表示的數(shù)為﹣3,點(diǎn)B表示的數(shù)為1.表示0的點(diǎn)C到點(diǎn)A的距離是3,到點(diǎn)B的距離是1,那么點(diǎn)C是{A,B}的奇點(diǎn);又如,表示﹣2的點(diǎn)D到點(diǎn)A的距離是1,到點(diǎn)B的距離是3,那么點(diǎn)D就不是{A,B}的奇點(diǎn),但點(diǎn)D是{B,A}的奇點(diǎn).
(知識(shí)運(yùn)用)
如圖2,M、N為數(shù)軸上兩點(diǎn),點(diǎn)M所表示的數(shù)為﹣3,點(diǎn)N所表示的數(shù)為5.
(1)數(shù) 所表示的點(diǎn)是{M,N}的奇點(diǎn);數(shù) 所表示的點(diǎn)是{N,M}的奇點(diǎn);
(2)如圖3,A、B為數(shù)軸上兩點(diǎn),點(diǎn)A所表示的數(shù)為﹣50,點(diǎn)B所表示的數(shù)為30.現(xiàn)有一動(dòng)點(diǎn)P從點(diǎn)B出發(fā)向左運(yùn)動(dòng),當(dāng)P點(diǎn)運(yùn)動(dòng)到數(shù)軸上的什么位置時(shí),P、A和B中恰有一個(gè)點(diǎn)為其余兩點(diǎn)的奇點(diǎn)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com