【題目】如圖1,已知ABCD,AB//x軸,AB=6,點A的坐標(biāo)為(1,-4),點D的坐標(biāo)為(-3,4),點B在第四象限,點P是ABCD邊上的一個動點.

(1)若點P在邊BC上,PD=CD,求點P的坐標(biāo).
(2)若點P在邊AB,AD上,點P關(guān)于坐標(biāo)軸對稱的點Q落在直線y=x-1上,求點P的坐標(biāo).
(3)若點P在邊AB,AD,CD上,點G是AD與y軸的交點,如圖2,過點P作y軸的平行線PM,過點G作x軸的平行線GM,它們相交于點M,將△PGM沿直線PG翻折,當(dāng)點M的對應(yīng)點落在坐標(biāo)軸上時,求點P的坐標(biāo)(直接寫出答案).

【答案】
(1)

解:在ABCD中, CD=AB=6,

所以點P與點C重合,

所以點P的坐標(biāo)為(3,4).


(2)

解:①當(dāng)點P在邊AD上時,

由已知得,直線AD的函數(shù)表達(dá)式為y=-2x-2,

設(shè)P(a,-2a-2),且-3≤a≤1,

若點P關(guān)于x軸對稱點Q1(a,2a+2)在直線y=x-1上,

所以2a+2=a-1,解得a=-3,此時P(-3,4)。

若點P關(guān)于y軸對稱點Q2(-a,-2a-2)在直線y=x-1上,

所以-2a-2=-a-1,解得a=-1,此時P(-1,0).

②當(dāng)點P在邊AB上時,設(shè)P(a,-4),且1≤a≤7,

若點P關(guān)于x軸對稱點Q3(a,4)在直線y=x-1上,

所以4=a-1,解得a=5,此時P(5,-4).

若點P關(guān)于y軸對稱點Q4(-a,-4)在直線y=x-1上,

所以-4=-a-1,解得a=3,此時P(3,-4).

綜上所述,點P的坐標(biāo)為(-3,4)或(-1,0)或(5,-4)或(3,-4).


(3)

解:因為直線AD為y=-2x-2,所以G(0,-2).

①如圖,當(dāng)點P在CD邊上時,可設(shè)P(m,4),且-3≤m≤3,

則可得M′P=PM=4+2=6,M′G=GM=|m|,

易證得△OGM′~△HM′P,

,

則OM′= ,

在Rt△OGM′中,

由勾股定理得,

解得m= ,

則P( ,4)或( ,4);

②如下圖,當(dāng)點P在AD邊上時,設(shè)P(m,-2m-2),

則PM′=PM=|-2m|,GM′=MG=|m|,

易證得△OGM′~△HM′P,

,

,

則OM′=

在Rt△OGM′中,

由勾股定理得, ,

整理得m= ,

則P( ,3);

如下圖,當(dāng)點P在AB邊上時,設(shè)P(m,-4),

此時M′在y軸上,則四邊形PM′GM是正方形,

所以GM=PM=4-2=2,

則P(2,-4).

綜上所述,點P的坐標(biāo)為(2,-4)或( ,3)或( ,4)或( ,4).


【解析】(1)點P在BC上,要使PD=CD,只有P與C重合;(2)首先要分點P在邊AB,AD上時討論,根據(jù)“點P關(guān)于坐標(biāo)軸對稱的點Q”,即還要細(xì)分“點P關(guān)于x軸的對稱點Q和點P關(guān)于y軸的對稱點Q”討論,根據(jù)關(guān)于x軸、y軸對稱點的特征(關(guān)于x軸對稱時,點的橫坐標(biāo)不變,縱坐標(biāo)變成相反數(shù);關(guān)于y軸對稱時,相反;)將得到的點Q的坐標(biāo)代入直線y=x-1,即可解答;(3)在不同邊上,根據(jù)圖象,點M翻折后,點M’落在x軸還是y軸,可運用相似求解.
【考點精析】解答此題的關(guān)鍵在于理解平行四邊形的性質(zhì)的相關(guān)知識,掌握平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分,以及對翻折變換(折疊問題)的理解,了解折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應(yīng)點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和角相等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一條公路修到湖邊時,需拐彎繞湖而過,如果第一次拐的角∠A120°,第二次拐的角∠B150°,第三次拐的角是∠C,這時的道路恰好和第一次拐彎之前的道路平行,則∠C的大小是( )

A. 150° B. 130° C. 140° D. 120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖為某城市部分街道示意圖,四邊形ABCD為正方形,點G在對角線BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路線為B→A→G→E,小聰?shù)眯凶叩穆肪為B→A→D→E→F.若小敏行走的路程為3100m,則小聰行走的路程為m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)場擬建一間矩形種牛飼養(yǎng)室,飼養(yǎng)室的一面靠現(xiàn)有墻(墻足夠長),已知計劃中的建筑材料可建圍墻的總長為為50m.設(shè)飼養(yǎng)室長為x(m),占地面積為y(m2).


(1)如圖1,問飼養(yǎng)室長x為多少時,占地面積y最大?
(2)如圖2,現(xiàn)要求在圖中所示位置留2m寬的門,且仍使飼養(yǎng)室的占地面積最大。小敏說:“只要飼養(yǎng)室長比(1)中的長多2m就行了.”

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在ABC中,AB=ACBDACD,CEABE,BDCE相交于F.

求證:AF平分∠BAC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,BEGF,∠1=∠3,∠DBC=70°,求∠EDB的大。

閱讀下面的解答過程,并填空(理由或數(shù)學(xué)式)

解:∵BEGF(已知)

∴∠2=∠3(   )

∵∠1=∠3(   )

∴∠1=(   )(   )

DE∥(   )(   )

∴∠EDB+∠DBC=180°(   )

∴∠EDB=180°﹣∠DBC(等式性質(zhì))

∵∠DBC=(   )(已知)

∴∠EDB=180°﹣70°=110°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,點E在AB上,以AE為直徑的⊙O與BC相切于點D,連接AD.
(1)求證:AD平分∠BAC;
(2)若⊙O的直徑為10,sin∠DAC= ,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ABCD相交于O點,OECD,OC平分∠AOF,EOF=56°,

(1)求∠BOD的度數(shù);

(2)寫出圖中所有與∠BOE互余的角,它們分別是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,G BC 的中點,且 DGBCDEAB E,DFAC F, BECF

(1)求證:AD 是∠BAC 的平分線;

(2)如果 AB8,AC6,求 AE 的長.

查看答案和解析>>

同步練習(xí)冊答案