精英家教網 > 初中數學 > 題目詳情

【題目】已知整數a1,a2,a3,a4,…滿足下列條件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…,依此類推,則a2018的值為_____

【答案】﹣1009

【解析】

根據條件求出前幾個數的值,再分n是奇數時,結果等于-(n-1),n是偶數時,結果等于-,然后把n的值代入進行計算即可得解.

a1=0,

a2=-|a1+1|=|=-|0+1|=-1,

a3=-|a2+2|=-|-1+2|=-1,

a4=-|a3+3|=-|-1+3|=-2,

a5=-|a4+4|=-|-2+4|=-2,

…,

所以,n是奇數時,an=-(n-1),n是偶數時,an=-,

a2018=-=-=-1009.

故答案為:-1009.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】我們學習了勾股定理后,都知道“勾三、股四、弦五”.

觀察:3,4,5;5,12,13;7,24,25;9,40,41;……發(fā)現這些勾股數的勾都是奇數,且從3起就沒有間斷過.

(1)請你根據上述的規(guī)律寫出下一組勾股數:_______________________;

(2)若第一個數用字母n(n為奇數,且n≥3)表示,則后兩個數用含n的代數式表示分別為___________________。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一個小立方體的六個面分別標有字母A,BC,D,E,F從三個不同方向看到的情形如圖所示.

(1) A對面的字母是 ,B對面的字母是 E對面的字母是 .(請直接填寫答案)

(2) 若A=2x-1,B=-3x+9.C=-7.D=1,E=4x+5,F=9,且字母A與它對面的字母表示的數互為相反數,求B,E的值

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲乙兩地相距200千米,一輛客車從甲地開往乙地,一輛出租車從乙地開往甲地,兩車同時出發(fā),相向而行.已知客車的速度為60千米/小時,出租車的速度是100千米/小時.

(1)多長時間后兩車相遇?

(2)若甲乙兩地之間有相距50kmA、B兩個加油站,當客車進入A站加油時,出租車恰好進入B站加油,求A加油站到甲地的距離.

(3)若出租車到達甲地休息10分鐘后,按原速原路返回.出租車能否在到達乙地或到達乙地之前追上客車?若不能,則出租車往返的過程中,至少提速為多少才能在到達乙地或到達乙地之前追上客車?是否超速(高速限速為120千米/小時)?為什么?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某市在城中村改造中,需要種植、兩種不同的樹苗共棵,經招標,承包商以萬元的報價中標承包了這項工程,根據調查及相關資料表明, 兩種樹苗的成本價及成活率如表:

品種

購買價(元/棵)

成活率

設種植種樹苗棵,承包商獲得的利潤為元.

)求之間的函數關系式.

)政府要求栽植這批樹苗的成活率不低于,承包商應如何選種樹苗才能獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】隨著私家車擁有量的增加,停車問題已經給人們的生活帶來了很多不便.為了緩解停車矛盾,某小區(qū)開發(fā)商欲投資16萬元,建造若干個停車位,考慮到實際因素,計劃露天車位的數量不少于室內車位的2倍,但不超過室內車位的3倍.據測算,建造費用及年租金如下表:

類別

室內車位

露天車位

建造費用(元/個)

5 000

1 000

年租金(元/個)

2 000

800

(1)該開發(fā)商有哪幾種符合題意的建造方案?寫出解答過程.

(2)若按表中的價格將兩種車位全部出租,哪種方案獲得的年租金最多?并求出此種方案的年租金.(不考慮其他費用)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知AB=AC,AE=AF,BECF交于點D,則對于下列結論:①△ABE≌△ACF;②△BDF≌△CDE;③D在∠BAC的平分線上.其中正確的是( 。

A. B. C. D. ①②③

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在△APE中,∠PAE=90°,PO是△APE的角平分線,以O為圓心,OA為半徑作圓交AE于點G.
(1)求證:直線PE是⊙O的切線;
(2)在圖2中,設PE與⊙O相切于點H,連結AH,點D是⊙O的劣弧 上一點,過點D作⊙O的切線,交PA于點B,交PE于點C,已知△PBC的周長為4,tan∠EAH= ,求EH的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,點O為直線AB上一點,過點O作射線OC,使BOC=120°,將一個含30°的直角三角板的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.(圖中OMN=30°,∠NOM=90°)

(1)將圖1中的三角板繞點O逆時針旋轉至圖2,使OMBOC的內部,且恰好平分BOC,問直線ON是否平分AOC?請說明理由;

(2)將圖1中的三角板繞點O按每秒的速度沿逆時針方向旋轉一周,在旋轉的過程中,第t秒時,直線ON恰好平分銳角AOC,求t

(3)將圖1中的三角板繞點O順時針旋轉至圖3,使ONAOC的內部,請?zhí)骄浚?/span>AOMNOC之間的數量關系,并說明理由.

查看答案和解析>>

同步練習冊答案