【題目】一次函數(shù)y=﹣ x+2與x軸、y軸分別交于A、B兩點(diǎn)

(1)畫(huà)出該函數(shù)的圖象

(2)求A、B兩點(diǎn)的坐標(biāo);

(3)求直線與兩坐標(biāo)軸圍成三角形的面積.

【答案】(1)圖形見(jiàn)解析;(2)A(4,0),B(0,2);(3)4.

【解析】試題分析:(1)使用兩點(diǎn)法畫(huà)一次函數(shù)的圖象,一次函數(shù)的圖象經(jīng)過(guò)兩點(diǎn)(0,b)、

,0);

(2)根據(jù)函數(shù)的圖象與x、y軸交點(diǎn)的坐標(biāo)特點(diǎn),分別令y=0求出x的值;令x=0求出y的值即可求出A、B兩點(diǎn)的坐標(biāo);

(3)根據(jù)AB兩點(diǎn)的坐標(biāo),求得AOBO的長(zhǎng),即可得到直線與兩坐標(biāo)軸圍成三角形的面積.

(1)列表:

描點(diǎn),連線:

(2)在一次函數(shù)y=﹣x+2中,令y=0,則x=4;令x=0,則y=2,

∴A(4,0),B(0,2);

(3)由A(4,0),B(0,2),可得AO=4,BO=2,

∴△AOB的面積=AO×BO=4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義符號(hào)min{a,b}的含義為:當(dāng)a≥b時(shí),min{a,b}=b;當(dāng)a<b時(shí),min{a,b}=a.如:min={1,﹣2}=﹣2,min{﹣1,2}=﹣1.則min{x2﹣1,﹣2}的值是(
A.x2﹣1
B.2
C.﹣1
D.﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)4-3所在象限是( 。

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,A(1,0)、點(diǎn)B在y軸上,將三角形OAB沿x軸負(fù)方向平移,平移后的圖形為三角形DEC,且點(diǎn)C的坐標(biāo)為(﹣3,2).

(1)直接寫(xiě)出點(diǎn)E的坐標(biāo);
(2)在四邊形ABCD中,點(diǎn)P從點(diǎn)B出發(fā),沿BC→CD移動(dòng).若點(diǎn)P的速度為每秒1個(gè)單位長(zhǎng)度,運(yùn)動(dòng)時(shí)間為t秒,請(qǐng)解決以下問(wèn)題,并說(shuō)明你的理由:
①當(dāng)t為多少秒時(shí),點(diǎn)P的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù);
②求點(diǎn)P在運(yùn)動(dòng)過(guò)程中的坐標(biāo)(用含t的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖A在x軸負(fù)半軸上,B(0,-4),點(diǎn)E(-6,4)在射線BA上,

(1) 求證:點(diǎn)A為BE的中點(diǎn)

(2) 在y軸正半軸上有一點(diǎn)F, 使 ∠FEA=45°,求點(diǎn)F的坐標(biāo).

(3) 如圖,點(diǎn)M、N分別在x軸正半軸、y軸正半軸上,MN=NB=MA,點(diǎn)I為△MON的內(nèi)角平分線的交點(diǎn),AI、BI分別交y軸正半軸、x軸正半軸于P、Q兩點(diǎn), IH⊥ON于H, 記△POQ的周長(zhǎng)為C△POQ.求證:C△POQ=2 HI.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了測(cè)量某風(fēng)景區(qū)內(nèi)一座塔AB的高度,某人分別在塔的對(duì)面一樓房CD的樓底C、樓頂D處,測(cè)得塔頂A的仰角為45°和30°,已知樓高CD為10m,求塔的高度。(結(jié)果精確到0.1m)(參考數(shù)據(jù)1.41,1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】4的平方根是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一元二次方程x(x2)x2的根是(  )

A.x2B.x10,x22C.x12,x21D.x=﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】袋中裝有大小相同的2個(gè)紅球和2個(gè)綠球.

(1)先從袋中摸出1個(gè)球后放回,混合均勻后再摸出1個(gè)球.求第一次摸到綠球,第二次摸到紅球的概率;(用列表或數(shù)狀圖說(shuō)明理由)

(2)先從袋中摸出1個(gè)球后不放回,再摸出1個(gè)球,則兩次摸到的球中有1個(gè)綠球和1個(gè)紅球的概率是多少?請(qǐng)直接寫(xiě)出結(jié)果.

查看答案和解析>>

同步練習(xí)冊(cè)答案