【題目】如圖,在正方形ABCD中,點E與點F分別在線段AC、BC上,且四邊形DEFG是正方形。
(1)求證AE=CG,并說明理由。
(2)連接AG,若AB=17,DG=13,求AG的長.
【答案】(1)AE=CG;(2)3
【解析】
(1)因為四邊形EFGD是正方形,所以DE=DG,∠EDC+∠CDG=90°,由四邊形ABCD是正方形,得到∠ADE=∠CDG,根據(jù)全等三角形的判定(SAS)得到△ADE≌△CDG,再根據(jù)全等三角形的性質(zhì)得到AE=CG;
(2)由(1)知,AE=CG,又因為∠DCG=∠DAE=45°,結合題意得到∠ACG=90°,
所以得到AE⊥CG,過E作EH⊥AD,設AH=EH=x,則根據(jù)勾股定理得到,解得x=5,則AE=CG=5,故可得AG=3.
(1)理由是:如圖1,∵四邊形EFGD是正方形,
∴DE=DG,∠EDC+∠CDG=90°,
∵四邊形ABCD是正方形,
∴AD =CD,∠ADE+∠EDC=90°,
∴∠ADE=∠CDG,
∴△ADE≌△CDG(SAS),
∴AE=CG.
(2)由(1)知,AE=CG,又∠DCG=∠DAE=45°,
∵∠ACD=45°,
∴∠ACG=90°,
∴CG⊥AC,即AE⊥CG,
過E作EH⊥AD,設AH=EH=x,則
解得x=5,則AE=CG=5,
所以AG==3.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為2,以點A為圓心,1為半徑作圓,E是A上的任意一點,將點E繞點D按逆時針方向旋轉90°,得到點F,連接AF,則AF的最大值是_____
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(探究)如圖1,在等邊△ABC中,AB=4,點D、E分別為邊BC、AB上的點,連結AD、DE,若∠ADE=60°,BD=3,求BE的長.
(拓展)如圖2,在△ABD中,AB=4,點E為邊AB上的點,連結DE,若∠ADE=∠ABD=45°,若DB=3,= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,過原點的直線與反比例函數(shù)y=(x>0)、反比例函數(shù)y=(x>0)的圖象分別交于A、B兩點,過點A作y軸的平行線交反比例函數(shù)y=(x>0)的圖象于C點,以AC為邊在直線AC的右側作正方形ACDE,點B恰好在邊DE上,則正方形ACDE的面積為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小李從市場上買回一塊矩形鐵皮,他將此矩形鐵皮的四個角各剪去一個邊長為1米的正方形后,剩下的部分剛好能圍成一個容積為35 m3的無蓋長方體箱子,且此長方體箱子的底面長比寬多2m,現(xiàn)己知購買這種鐵皮每平方米需30元錢,問小李購回這張矩形鐵皮共花了多少元錢?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)的圖像如圖所示,下列結論:(1)a+b+c=0(2)a-b+c>0(3)abc>0(4)b=-2a;其中正確的結論個數(shù)有其中正確的個數(shù)是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線的頂點為A(-3,-3),此拋物線交x軸于O、 B兩點.
(1)求此拋物線的解析式.
(2)求△AOB的面積 .
(3)若拋物線上另有點P滿足S△POB=S△AOB,請求出P坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形紙片ABCD中,對角線AC、BD長分別為16、12,折疊紙片使點A落在DB上,折痕交AC于點P,則DP的長為( 。
A. 3B. C. 3D. 3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com