【題目】如圖,過原點的直線與反比例函數(shù)y=x>0)、反比例函數(shù)y=x>0)的圖象分別交于A、B兩點,過點Ay軸的平行線交反比例函數(shù)y=x>0)的圖象于C點,以AC為邊在直線AC的右側作正方形ACDE,點B恰好在邊DE上,則正方形ACDE的面積為______

【答案】4-4

【解析】

設直線AB的解析式為y=kx,Am,),Bn,),則Cm),根據直線的解析式求得k==,進而求得n=,根據AC=AE,求得=-1,因為S正方形=AC2=2,即可求得正方形ACDE的面積.

設直線AB的解析式為y=kx,Am,),Bn,),Cm),

k==,
n=m,
AC=AE,即=n-m
=m-m,,解得:=-1,
S正方形=AC2=2=4×=4-1=4-4.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在直角坐標平面內,二次函數(shù)圖象的頂點為A1,﹣4),且過點B3,0).

1)求該二次函數(shù)的解析式;

2)將該二次函數(shù)圖象向右平移幾個單位,可使平移后所得圖象經過坐標原點?并直接寫出平移后所得圖象與x軸的另一個交點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD和正方形CEFC中,點DCG上,BC1,CE3,HAF的中點,EHCF交于點O.則HE的長為(  )

A. 2B. C. 2D. 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,利用一面墻(EF最長可利用28),圍成一個矩形花園ABCD.與墻平行的一邊BC上要預留2米寬的入口(如圖中MN所示,不用砌墻).現(xiàn)有砌60米長的墻的材料.

(1)當矩形的長BC為多少米時,矩形花園的面積為300平方米;

(2)能否圍成480平方米的矩形花園,為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=2∠DAB=60°,EAD邊的中點,點MAB邊上一動點(不與點A重合),延長ME交射線CD于點N,連接MDAN.

1)求證:四邊形AMDN是平行四邊形;

2)填空:AM的值為 時,四邊形AMDN是矩形;AM的值為 時,四邊形AMDN是菱形。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,點E與點F分別在線段AC、BC上,且四邊形DEFG是正方形。

(1)求證AE=CG,并說明理由。

(2)連接AG,若AB=17,DG=13,求AG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:△ABC是⊙O的內接正三角形,P為弧BC上一點(與點B、C不重合),

1)如果點P是弧BC的中點,求證:PB+PC=PA;

2)如果點P在弧BC上移動時,(1)的結論還成立嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O的半徑OD⊥弦AB于點C,連結AO并延長交⊙O于點E,連結EC.若AB=8,CD=2.

(1)求OD的長.

(2)求EC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點,過點A作BC的平行線交BE的延長線于點F,連接CF.

(1)求證:AF=DC;

(2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結論;

(3)在(2)的條件下,要使四邊形ADCF為正方形,在△ABC中應添加什么條件,請直接把補充條件寫在橫線上 (不需說明理由).

查看答案和解析>>

同步練習冊答案