【題目】如圖,在BCE中,點(diǎn)A是邊BE上一點(diǎn),以AB為直徑的⊙OCE相切于點(diǎn)DADOC,點(diǎn)FOC與⊙O的交點(diǎn),連接AF.

1)求證:CB是⊙O的切線;

2)若∠ECB=60°AB=6,求圖中陰影部分的面積.

【答案】(1)詳見(jiàn)解析;(2.

【解析】試題分析:(1)欲證明CB⊙O的切線,只要證明BC⊥OB,可以證明△CDO≌△CBO解決問(wèn)題.

2)首先證明S=S扇形ODF,然后利用扇形面積公式計(jì)算即可.

試題解析:(1)證明:連接OD,與AF相交于點(diǎn)G,∵CE⊙O相切于點(diǎn)D,∴OD⊥CE,∴∠CDO=90°,∵AD∥OC,∴∠ADO=∠1,∠DAO=∠2∵OA=OD,∴∠ADO=∠DAO∴∠1=∠2,在△CDO△CBO中,∵CO=CO,∠1=∠2,OD=OC∴△CDO≌△CBO,∴∠CBO=∠CDO=90°,∴CB⊙O的切線.

2)由(1)可知3=BCO,1=2∵∠ECB=60°,∴∠3=ECB=30°,∴∠1=2=60°,∴∠4=60°OA=OD,∴△OAD是等邊三角形,AD=OD=OF,∵∠1=ADO,在ADGFOG中,∵∠1=ADG,FGO=AGDAD=OF,∴△ADG≌△FOGSADG=SFOG,AB=6∴⊙O的半徑r=3,S=S扇形ODF==

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點(diǎn),過(guò)點(diǎn)A作BC的平行線交BE的延長(zhǎng)線于點(diǎn)F,連接CF.

(1)求證:AF=BD;

(2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,由兩個(gè)長(zhǎng)為8,寬為4的全等矩形疊合而得到四邊形ABCD,則四邊形ABCD面積的最大值是( )

A.15B.16C.19D.20

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=x+2與x軸交于點(diǎn)A,與y軸交于點(diǎn)C,拋物線y=x2+bx+c經(jīng)過(guò)A、C兩點(diǎn),與x軸的另一交點(diǎn)為點(diǎn)B.

(1)求拋物線的函數(shù)表達(dá)式;

(2)點(diǎn)D為直線AC上方拋物線上一動(dòng)點(diǎn);

①連接BC、CD,設(shè)直線BD交線段AC于點(diǎn)E,△CDE的面積為S1, △BCE的面積為S2, 求的最大值;

②過(guò)點(diǎn)D作DF⊥AC,垂足為點(diǎn)F,連接CD,是否存在點(diǎn)D,使得△CDF中的某個(gè)角恰好等于∠BAC的2倍?若存在,求點(diǎn)D的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩商場(chǎng)以同樣價(jià)格出售同樣的商品:并且又各自推出不同的優(yōu)惠方案,在甲商場(chǎng)累計(jì)購(gòu)物超過(guò)100元后,超出100元的部分按收費(fèi);在乙商場(chǎng)累計(jì)購(gòu)物超過(guò)50元后,超出50元的部分按收費(fèi).顧客到哪家商場(chǎng)購(gòu)物花費(fèi)少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】【背景】已知:lmnk,平行線lm、mn、nk之間的距離分別為d1,d2d3,且d1d3=1,d2=2.我們把四個(gè)頂點(diǎn)分別在lm,nk這四條平行線上的四邊形稱為“格線四邊形” .

【探究1】(1)如圖1,正方形ABCD為“格線四邊形”,BEl于點(diǎn)EBE的反向延長(zhǎng)線交直線k于點(diǎn)F.求正方形ABCD的邊長(zhǎng).

【探究2】(2)如圖2,菱形ABCD為“格線四邊形”且∠ADC=60°,△AEF是等邊三角形,AEk于點(diǎn)E,∠AFD=90°,直線DF分別交直線l,k于點(diǎn)G、點(diǎn)M.求證:ECDF

【拓展】(3)如圖3,lk,等邊△ABC的頂點(diǎn)AB分別落在直線l,k上,ABk于點(diǎn)B,且∠ACD=90°,直線CD分別交直線l、k于點(diǎn)G、點(diǎn)M,點(diǎn)D、點(diǎn)E分別是線段GM、BM上的動(dòng)點(diǎn),且始終保持ADAEDHl于點(diǎn)H.猜想:DH在什么范圍內(nèi),BCDE?并說(shuō)明此時(shí)BCDE的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有甲、乙兩個(gè)空調(diào)安裝隊(duì)分別為A、B兩個(gè)公司安裝空調(diào),甲安裝隊(duì)為A公司安裝66臺(tái)空調(diào),乙安裝隊(duì)為B公司安裝60臺(tái)空調(diào),甲、乙兩隊(duì)安裝空調(diào)所用的總時(shí)間相同.已知甲隊(duì)比乙隊(duì)平均每天多安裝2臺(tái)空調(diào),求甲、乙兩個(gè)安裝隊(duì)平均每天各安裝空調(diào)的臺(tái)數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)任意一個(gè)三位數(shù)n,如果n滿足各個(gè)數(shù)位上的數(shù)字互不相同,且都不為零,那么稱這個(gè)數(shù)為相異數(shù),將一個(gè)相異數(shù)”n的各個(gè)數(shù)位上的數(shù)字之和記為Fn).例如n=135時(shí),F135=1+3+5=9

1)對(duì)于相異數(shù)”n,若Fn=6,請(qǐng)你寫(xiě)出一個(gè)n的值;

2)若a,b都是相異數(shù),其中a=100x+12,b=350+y1≤x≤9,1≤y≤9,x,y都是正整數(shù)),規(guī)定:k,當(dāng)Fa+Fb=18時(shí),求k的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是正方形,點(diǎn)E,F(xiàn)分別在BC,AB上,點(diǎn)M在BA的延長(zhǎng)線上,且CE=BF=AM,過(guò)點(diǎn)M,E分別作NM⊥DM,NE⊥DE交于N,連接NF.

(1)求證:DE⊥DM;

(2)猜想并寫(xiě)出四邊形CENF是怎樣的特殊四邊形,并證明你的猜想.

查看答案和解析>>

同步練習(xí)冊(cè)答案