【題目】如圖,在ABC中,以AB為直徑的⊙OAC于點M,弦MNBCAB于點E,且ME1,AM2,AE

1)求證:BC是⊙O的切線;

2)求⊙O的半徑.

【答案】1)見解析;(2

【解析】

(1)欲證明BC是⊙O的切線,只需證明ABBC即可;

(2)連接OM,設O的半徑是r,在RtAEM中,OEAEOAr,ME1,OMr,利用勾股定理即可求得.

1)證明:AME中,AM2,ME1AE,

AM2ME2+AE2

∴△AME是直角三角形,

∴∠AEM90°,

MNBC

∴∠ABC90°,

ABBC,

AB為直徑,

BCO的切線;

2)解:連接OM,如圖,設O的半徑是r,

Rt△OEM中,OEAEOAr,ME1,OMr,

OM2ME2+OE2,

r212+r2,

解得r

O的半徑為

故答案為:(1)證明見解析;(2)

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,直線ly=x-x軸交于點B1,以OB1為邊長作等邊三角形A1OB1,過點A1A1B2平行于x軸,交直線l于點B2,以A1B2為邊長作等邊三角形A2A1B2,過點A2A2B3平行于x軸,交直線l于點B3,以A2B3為邊長作等邊三角形A3A2B3,…,按此規(guī)律進行下去,則點A3的橫坐標為______;點A2018的橫坐標為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩車分別從相距480kmA、B兩地相向而行,乙車比甲車先出發(fā)1小時,并以各自的速度勻速行駛,途徑C地,甲車到達C地停留1小時,因有事按原路原速返回A地.乙車從B地直達A地,兩車同時到達A地.甲、乙兩車距各自出發(fā)地的路程y(千米)與甲車出發(fā)所用的時間x(小時)的關系如圖,結合圖象信息解答下列問題:

1)乙車的速度是   千米/時,t  小時;

2)求甲車距它出發(fā)地的路程y與它出發(fā)的時間x的函數(shù)關系式,并寫出自變量的取值范圍;

3)直接寫出乙車出發(fā)多長時間兩車相距120千米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,點M為二次函數(shù)y=﹣(xb2+4b+1圖象的頂點,直線ymx+5分別交x軸正半軸,y軸于點A,B

1)判斷頂點M是否在直線y4x+1上,并說明理由.

2)如圖1,若二次函數(shù)圖象也經(jīng)過點A,B,且mx+5>﹣(xb2+4b+1,根據(jù)圖象,寫出x的取值范圍.

3)如圖2,點A坐標為(5,0),點MAOB內(nèi),若點C,y1),D,y2)都在二次函數(shù)圖象上,試比較y1y2的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知頂點為的拋物線經(jīng)過點,點.

(1)求拋物線的解析式;

(2)如圖1,直線軸相交于點軸相交于點,拋物線與軸相交于點,在直線上有一點,若,求的面積;

(3)如圖2,點是折線上一點,過點軸,過點軸,直線與直線相交于點,連接,將沿翻折得到,若點落在軸上,請直接寫出點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC與△AEF中,ABAEBCEF,∠B=∠E,ABEFD.給出下列結論:AFC=∠C;DFBF;ADE∽△FDB;BFD=∠CAF.其中正確的結論是_____(填寫所有正確結論的序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,旗桿AB的頂端B在夕陽的余輝下落在一個斜坡上的點D處,某校數(shù)學課外興趣小組的同學正在測量旗桿的高度,在旗桿的底部A處測得點D的仰角為15°,AC=10米,又測得BDA=45°.已知斜坡CD的坡度為i=1:,求旗桿AB的高度(1.7,結果精確到個位).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在△ABC中,AB=BC,∠ABC=90°,點D、E分別是邊AB、BC的中點,點F、G是邊AC的三等分點,DF、EG的延長線相交于點H,連接HA、HC

(1)求證:四邊形FBGH是菱形;

(2)求證:四邊形ABCH是正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線軸,軸分別交于點,經(jīng)過點的拋物線軸的另一個交點為點,點是拋物線上一點,過點軸于點,連接,設點的橫坐標為.

求拋物線的解析式;

當點在第三象限,設的面積為,求的函數(shù)關系式,并求出的最大值及此時點的坐標;

連接,若,請直接寫出此時點的坐標.

查看答案和解析>>

同步練習冊答案