【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點(diǎn),交y軸于C點(diǎn),其中B點(diǎn)坐標(biāo)為(3,0),C點(diǎn)坐標(biāo)為(0,3),且圖象對稱軸為直線x=1

1)求此二次函數(shù)的關(guān)系式;

2P為二次函數(shù)y=ax2+bx+c圖象上一點(diǎn),且SABP=SABC,求P點(diǎn)的坐標(biāo).

【答案】1)二次函數(shù)的表達(dá)式為y=x2+2x+3;(2P點(diǎn)的坐標(biāo)為(2,3)或(1,3)或(1+3).

【解析】試題分析:(1)將B、C的坐標(biāo)和對稱軸方程代入拋物線的解析式中,即可求得待定系數(shù)的值,可得此二次函數(shù)的關(guān)系式;

2根據(jù)等底等高的三角形的面積相等,可得P的縱坐標(biāo)與C的縱坐標(biāo)相等或互為相反數(shù),根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得答案.

試題解析:解:1)根據(jù)題意,得 解得

故二次函數(shù)的表達(dá)式為y=﹣x2+2x+3

2)由SABP=SABC,得yP=3或﹣3,當(dāng)y=3時,x=2當(dāng)y=﹣3時,﹣x2+2x+3=﹣3,

解得x1=,x2=

P點(diǎn)的坐標(biāo)為(23)或(,3)或(,3).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:直線EF分別與直線AB,CD相交于點(diǎn)F,E,EM平分∠FED,ABCD,H,P分別為直線AB和線段EF上的點(diǎn)。

(1)如圖1,HM平分∠BHP,若HPEF,求∠M的度數(shù)。

(2)如圖2,EN平分∠HEFAB于點(diǎn)N,NQEM于點(diǎn)Q,當(dāng)H在直線AB上運(yùn)動(不與點(diǎn)F重合)時,探究∠FHE與∠ENQ的關(guān)系,并證明你的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD,點(diǎn)M是邊BA延長線上的動點(diǎn)(不與點(diǎn)A重合),且AM<AB,△CBE由DAM平移得到.若過點(diǎn)E作EHAC,H為垂足,則有以下結(jié)論:點(diǎn)M位置變化,使得DHC=60°時,2BE=DM;無論點(diǎn)M運(yùn)動到何處,都有DM=HM;③無論點(diǎn)M運(yùn)動到何處,CHM一定大于135°.其中正確結(jié)論的序號為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊△OAB和等邊△AFE的一邊都在x軸上,雙曲線y=k0)經(jīng)過邊OB的中點(diǎn)CAE的中點(diǎn)D.已知等邊△OAB的邊長為4

(1)求該雙曲線所表示的函數(shù)解析式;

(2)求等邊△AEF的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B兩地相距200km,一列火車從B地出發(fā)沿BC方向以的速度行駛,在行駛過程中,這列火車離A地的路程與行駛時間之間的函數(shù)關(guān)系式是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖像與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),且對稱軸為直線x=1,點(diǎn)B坐標(biāo)為(-1,0).則下面的四個結(jié)論:①2a+b=0;②4a-2b+c<0;③ac>0;④當(dāng)y<0時,x<-1或x>3.其中正確的個數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊ABC中,AB9,NAB上一點(diǎn),且AN3,BC的高線ADBC于點(diǎn)DMAD上的動點(diǎn),連結(jié)BM,MN,則BM+MN的最小值是

A. B. C. D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓E是三角形ABC的外接圓, BAC=45°,AOBCO,且BO=2,CO=3,分別以BC、AO所在直線建立x.

1)求三角形ABC的外接圓直徑;

2)求過ABC三點(diǎn)的拋物線的解析式;

3)設(shè)P是(2)中拋物線上的一個動點(diǎn),且三角形AOP為直角三角形,則這樣的點(diǎn)P有幾個?(只需寫出個數(shù),無需解答過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, BAD CAE 90 , AB AD AE AC , ABD ADB ACE AEC 45 AF CF ,垂足為 F .

1)若 AC 10 ,求四邊形 ABCD 的面積;

2)求證: CE 2 AF .

查看答案和解析>>

同步練習(xí)冊答案