【題目】在平行四邊形ABCD中,AB=2AD.

(1)作AE平分∠BAD交DC于E(尺規(guī)作圖,保留作圖痕跡);

(2)在(1)的條件下,連接BE,判定△ABE的形狀(不要求證明).

【答案】(1)作圖見解析;

(2)△ABE為直角三角形.

【解析】試題分析:(1)根據(jù)作角平分線的方法求作即可;

2EEFADAB于點F,則四邊形AFED是平行四邊形,可證得EFAB,即可求得結(jié)果.

試題解析:1)如圖,AE為所求;

2ABE為直角三角形.

證明:過EEFADAB于點F,則四邊形AFED是平行四邊形,

∴∠FEA=FAD EF=AD

AE為∠DAB的平分線

∴∠EAF=EDA

∴∠FEA=EAF

EF=AF

AB=2AD

AB=2EF

AF=EF=FB

ABE為直角三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知菱形ABCD的邊長是13,O是對角線的交點,過O點的三條直線將菱形分成陰影和空白部分.若菱形一條對角線長為10,則圖中陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,點D在邊AB上,連結(jié)CD,將線段CD繞點C順時針旋轉(zhuǎn)90°至CE位置,連接AE.

(1)求證:AB⊥AE;

(2)若,求證:四邊形ADCE為正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=3,AC=4,BC=5,P為邊BC上一動點,PE⊥AB于E,PF⊥AC于F,M為EF中點,則AM的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是矩形ABCD內(nèi)的任意一點,連接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,設(shè)它們的面積分別是S1、S2、S3、S4 , 給出如下結(jié)論: ①S1+S2=S3+S4;②S2+S4=S1+S3;③若S3=2S1 , 則S4=2S2;④若S1=S2 , 則P點在矩形的對角線上.
其中正確的結(jié)論的序號是(把所有正確結(jié)論的序號都填在橫線上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題
(1)如圖①, 的內(nèi)角 的平分線與外角 的平分線相交于 點, ,求 的度數(shù).

(2)如圖,四邊形 中,設(shè) , 為四邊形 的內(nèi)角 與外角 的平分線所在直線相交而形成的銳角.

①如圖②,若 ,求 的度數(shù).(用 、 的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將兩塊直角三角尺的直角頂點C疊放在一起.

(1)寫出以C為頂點的相等的銳角,并說明理由;
(2)若射線CB平分∠DCE,求∠ACE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請設(shè)計一個實際背景來表示不等式2x+1>3的實際意義:_____________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,O為坐標(biāo)原點,四邊形OABC為矩形,A(10,0),C(0,4),點D是OA中點,點P在BC上以每秒1個單位的速度由C向B運動,設(shè)運動時間為t秒.

(1)△ODP的面積S=
(2)t為何值時,四邊形PODB是平行四邊形?
(3)在線段PB上是否存在一點Q,使得ODQP為菱形?若存在,求t的值,并求出Q點的坐標(biāo);若不存在,請說明理由;
(4)若△OPD為等腰三角形,請寫出所有滿足條件的點P的坐標(biāo)(請直接寫出答案,不必寫過程)

查看答案和解析>>

同步練習(xí)冊答案