【題目】如圖,△ABC中,D、E是BC邊上的點,BD:DE:EC=3:2:1,M在AC邊上,CM:MA=1:2,BM交AD,AE于H,G,則BH:HG:GM等于(  )

A. 3:2:1 B. 5:3:1 C. 25:12:5 D. 51:24:10

【答案】D

【解析】連接EM,

CE:CD=CM:CA=1:3

∴EM平行于AD

∴△BHD∽△BME,△CEM∽△CDA

∴HD:ME=BD:BE=3:5,ME:AD=CM:AC=1:3

AH=(3﹣)ME,

∴AH:ME=12:5

∴HG:GM=AH:EM=12:5

設(shè)GM=5k,GH=12k,

∵BH:HM=3:2=BH:17k

BH=K,

BH:HG:GM=k:12k:5k=51:24:10

故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【操作發(fā)現(xiàn)】如圖 1,△ABC 為等邊三角形,點 D AB 邊上的一點,∠DCE=30°,將線段 CD 繞點 C 順時針旋轉(zhuǎn) 60°得到線段 CF,連接 AFEF. 請直接 寫出下列結(jié)果:

① ∠EAF的度數(shù)為__________;

DEEF之間的數(shù)量關(guān)系為__________

【類比探究】如圖 2,△ABC 為等腰直角三角形,∠ACB=90°,點 D AB 邊上的一點∠DCE=45°,將線段 CD 繞點 C 順時針旋轉(zhuǎn) 90°得到線段 CF,連接 AFEF.

①則∠EAF的度數(shù)為__________;

② 線段 AE,EDDB 之間有什么數(shù)量關(guān)系?請說明理由;

【實際應(yīng)用】如圖 3,△ABC 是一個三角形的余料.小張同學(xué)量得∠ACB=120°,AC=BC, 他在邊 BC 上取了 D、E 兩點,并量得∠BCD=15°、∠DCE=60°,這樣 CDCE 將△

ABC 分成三個小三角形,請求△BCD、△DCE、△ACE 這三個三角形的面積之比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,AC=BC,點OAB上,經(jīng)過點A的⊙OBC相切于點D,交AB于點E

1)求證:AD平分∠BAC;

2)若CD=1,求圖中陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)y=kx+b與反比例函數(shù)y=(m≠0)的圖象交于點A(3,1),且過點B(0,﹣2).

(1)求反比例函數(shù)和一次函數(shù)的表達式;

(2)如果點P是x軸上一點,且△ABP的面積是3,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,E是對角線BD上一點,且滿足BEAD,連接CE并延長交AD于點F,連接AE,過B點作BGAE于點G,延長BGAD于點H.在下列結(jié)論中:①AHDF;②∠AEF45°;③S四邊形EFHGSDEF+SAGH;④BH平分∠ABE.其中不正確的結(jié)論有(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,DBDAADB的平分線交AB于點F,交CB的延長線于點E,連接AE.

(1)求證:四邊形AEBD是菱形;

(2)DC,EFBF3,求菱形AEBD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一般地,任何一個無限循環(huán)小數(shù)都可以寫成分數(shù)形式,如0.0.777…,它的循環(huán)節(jié)有一位,設(shè)0. x,由0. 0777…,可知,10x7.777…,所以10xx7,得x.于是,得0. ,再如0.0.737373…,它的循環(huán)節(jié)有兩位,設(shè)0.x,由0.0.737373…可知,100x73.7373…,所以100xx73.解方程得x.于是,得0. ,類比上述方法,無限循環(huán)小數(shù)0. 3化為分數(shù)形式為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,點A(1,0),B(4,1),C(4,3),反比例函數(shù)y=的圖象經(jīng)過點D,點P是一次函數(shù)y=mx+3﹣4m(m≠0)的圖象與該反比例函數(shù)圖象的一個公共點;

(1)求反比例函數(shù)的解析式;

(2)通過計算說明一次函數(shù)y=mx+3﹣4m的圖象一定過點C;

(3)對于一次函數(shù)y=mx+3﹣4m(m≠0),當y隨x的增大而增大時,確定點P的橫坐標的取值范圍,(不必寫過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】市某中學(xué)開展以三創(chuàng)一辦為中心,以校園文明為主題的手抄報比賽.同學(xué)們積極參與,參賽同學(xué)每人交了一份得意作品,所有參賽作品均獲獎,獎項分為一等獎、二等獎、三等獎和優(yōu)秀獎,將獲獎結(jié)果繪制成如下兩幅統(tǒng)計圖.請你根據(jù)圖中所給信息解答下列問題:

(1)一等獎所占的百分比是__________.

(2)在此次比賽中,一共收到多少份參賽作品?請將條形統(tǒng)計圖補充完整.

(3)各獎項獲獎學(xué)生分別有多少人?

查看答案和解析>>

同步練習(xí)冊答案