【題目】幾何學(xué)的產(chǎn)生,源于人們對土地面積測量的需要,以面積早就成為人們認(rèn)識圖形性質(zhì)與幾何證明的有效工具,可以說幾何學(xué)從一開始便與面積結(jié)下了不解之緣.我們已經(jīng)掌握了平行四邊形面積的求法,但是一般四邊形的面積往往不易求得,那么我們能否將其轉(zhuǎn)化為平行四邊形來求呢?
(1)方法1:如圖①,連接四邊形的對角線,,分別過四邊形的四個(gè)頂點(diǎn)作對角線的平行線,所作四條線相交形成四邊形,易證四邊形是平行四邊形.請直接寫出S四邊形ABCD和之間的關(guān)系:_______________.
方法2:如圖②,取四邊形四邊的中點(diǎn),,,,連接,,,,
(2)求證:四邊形是平行四邊形;
(3)請直接寫出S四邊形ABCD與之間的關(guān)系:_____________.
方法3:如圖③,取四邊形四邊的中點(diǎn),,,,連接,交于點(diǎn).先將四邊形繞點(diǎn)旋轉(zhuǎn)得到四邊形,易得點(diǎn),,在同一直線上;再將四邊形繞點(diǎn)旋轉(zhuǎn)得到四邊形,易得點(diǎn),,在同一直線上;最后將四邊形沿方向平移,使點(diǎn)與點(diǎn)重合,得到四邊形;
(4)由旋轉(zhuǎn)、平移可得_________,_________,所以,所以點(diǎn),,在同一直線上,同理,點(diǎn),,也在同一點(diǎn)線上,所以我們拼接成的圖形是一個(gè)四邊形.
(5)求證:四邊形是平行四邊形.
(注意:請考生在下面2題中任選一題作答如果多做,則按所做的第一題計(jì)分)
(6)應(yīng)用1:如圖④,在四邊形中,對角線與交于點(diǎn),,,,則S四邊形ABCD= .
(7)應(yīng)用2:如圖⑤,在四邊形中,點(diǎn),,,分別是,,,的中點(diǎn),連接,交于點(diǎn),,,,則S四邊形ABCD=___________
【答案】(1)S四邊形ABCD;(2)見詳解;(3)S四邊形ABCD ;(4)AEO,OEB;(5)見詳解;(6);(7)
【解析】
(1)先證四邊形AEBO, 四邊形BFCO, 四邊形CGDO, 四邊形DHAO都是平行四邊形,可得S△ABO=S四邊形AEBO, S△BCO=S四邊形BFCO, S△CDO=S四邊形CGDO, SADO=S四邊形DHAO,
即可得出結(jié)論;
(2)證明,和,,即可得出結(jié)論;
(3)由,可得S四邊形MNHE=S△ABD, S四邊形MNGF=S△CBD,即可得出結(jié)論;
(4)有旋轉(zhuǎn)的定義即可得出結(jié)論;
(5)先證,得到,再證,即可得出結(jié)論;
(6)應(yīng)用方法1,過點(diǎn)H作HM⊥EF與點(diǎn)M,再計(jì)算即可得出答案;
(7)應(yīng)用方法3,過點(diǎn)O作OM⊥IK與點(diǎn)M, 再計(jì)算即可得出答案.
解:方法一:如圖,
∵EF∥AC∥HD,EH∥DB∥FG,
∴四邊形AEBO, 四邊形BFCO, 四邊形CGDO, 四邊形DHAO都是平行四邊形,
∴S△ABO=S四邊形AEBO, S△BCO=S四邊形BFCO, S△CDO=S四邊形CGDO, SADO=S四邊形DHAO,
∴.
故答案為.
方法二:如圖,連接.
(1),分別為,中點(diǎn)
..
,分別為,中點(diǎn)
.
,
四邊形為平行四邊形
(2),分別為,中點(diǎn)
..
∴S四邊形MNHE=S△ABD, S四邊形MNGF=S△CBD,
∴
故答案為.
方法3.(1)有旋轉(zhuǎn)可知;.
故答案為∠AEO;∠OEB.
(2)證明:有旋轉(zhuǎn)知.
.
旋轉(zhuǎn).
四邊形為平行四邊形
應(yīng)用1:如圖,應(yīng)用方法1,過點(diǎn)H作HM⊥EF與點(diǎn)M,
∵,
∴∠AEM=60°, ∠EHM=30°,
∵,,
∴EM=3,EH=6,EF=8,
∴HM==,
∴=EF·HM=24
∴=,
故答案為.
應(yīng)用2:如圖,應(yīng)用方法3,過點(diǎn)O作OM⊥IK與點(diǎn)M,
,
∵,
∴∠MIO=60°, ∠IOM=30°,
∵,,
∴IM=3,OI=6,IK=8,
∴OM==,
∴=KI·OM=24
∴S四邊形ABCD=,
故答案為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為美化校園環(huán)境,某校計(jì)劃在一塊長為100米,寬為60米的長方形空地上修建一個(gè)長方形花圃,并將花圃四周余下的空地修建成同樣寬的通道,設(shè)通道寬為米.
(1)如果通道所占面積是整個(gè)長方形空地面積的,求出此時(shí)通道的寬;
(2)如果通道寬(米)的值能使關(guān)于的方程有兩個(gè)相等的實(shí)數(shù)根,并要求修建的通道的寬度不少于5米且不超過12米,求出此時(shí)通道的寬.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6cm,AD=8cm,點(diǎn)P從點(diǎn)B出發(fā),沿對角線BD向點(diǎn)D勻速運(yùn)動,速度為4cm/s,過點(diǎn)P作PQ⊥BD交BC于點(diǎn)Q,以PQ為一邊作正方形PQMN,使得點(diǎn)N落在射線PD上,點(diǎn)O從點(diǎn)D出發(fā),沿DC向點(diǎn)C勻速運(yùn)動,速度為3cm/s,以O(shè)為圓心,0.8cm為半徑作⊙O,點(diǎn)P與點(diǎn)O同時(shí)出發(fā),設(shè)它們的運(yùn)動時(shí)間為t(單 位:s)(0<t<)。
(1)如圖1,連接DQ平分∠BDC時(shí),t的值為 ;
(2)如圖2,連接CM,若△CMQ是以CQ為底的等腰三角形,求t的值;
(3)請你繼續(xù)進(jìn)行探究,并解答下列問題:
①證明:在運(yùn)動過程中,點(diǎn)O始終在QM所在直線的左側(cè);
②如圖3,在運(yùn)動過程中,當(dāng)QM與⊙O相切時(shí),求t的值;并判斷此時(shí)PM與⊙O是否也相切?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,已知,,于D,,,如何求AD的長呢?
心怡同學(xué)靈活運(yùn)用對稱知識,將圖形進(jìn)行翻折變換,巧妙地解答了此題,
請按照她的思路,探究并解答下列問題:
(1)分別以AB、AC為對稱軸,畫出、的軸對稱圖形,D點(diǎn)的對稱點(diǎn)為E、F,延長EB、FC相交于G點(diǎn),試證明四邊形AEGF是正方形;
(2)設(shè),利用勾股定理,建立關(guān)于x的方程模型,求出x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形紙片中,,將紙片沿對角線對折,邊與邊交于點(diǎn),此時(shí)恰為等邊三角形,則重疊部分的面積為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,為原點(diǎn),已知直線與軸交于點(diǎn),與軸交于點(diǎn),點(diǎn)與點(diǎn)關(guān)于軸對稱,如圖①.
(1)點(diǎn)的坐標(biāo)為________,點(diǎn)的坐標(biāo)為________,點(diǎn)的坐標(biāo)為________,直線的解析式為________.
(2)點(diǎn)是軸上的一個(gè)動點(diǎn)(點(diǎn)不與點(diǎn)重合),過點(diǎn)作軸的垂線,交直線于點(diǎn).交直線于點(diǎn)(圖②).
①如圖②,當(dāng)點(diǎn)在軸的正半軸上時(shí),若的面積為,求點(diǎn)的坐標(biāo);
②連接,若,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的袋子中裝有三個(gè)完全相同的小球,分別標(biāo)有數(shù)字3、4、5.從袋子中隨機(jī)取出一個(gè)小球,用小球上的數(shù)字作為十位的數(shù)字,然后放回;再取出一個(gè)小球,用小球上的數(shù)字作為個(gè)位上的數(shù)字,這樣組成一個(gè)兩位數(shù),試問:按這種方法能組成哪些位數(shù)?十位上的數(shù)字與個(gè)位上的數(shù)字之和為9的兩位數(shù)的概率是多少?用列表法或畫樹狀圖法加以說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小紅用一張長方形紙片ABCD進(jìn)行折紙,已知該紙片寬AB為8cm,長BC為10cm.當(dāng)小紅折疊時(shí),頂點(diǎn)D落在BC邊上的點(diǎn)F處(折痕為AE).想一想,此時(shí)EC有多長?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com