【題目】某學(xué)校有一塊長(zhǎng)方形活動(dòng)場(chǎng)地,長(zhǎng)為2x米,寬比長(zhǎng)少5米.實(shí)施“陽(yáng)光體育”行動(dòng)以后,學(xué)校為了擴(kuò)大學(xué)生的活動(dòng)場(chǎng)地,讓學(xué)生能更好地進(jìn)行體育活動(dòng),將操場(chǎng)的長(zhǎng)和寬都增加了4米.

1)求擴(kuò)大后學(xué)生的活動(dòng)場(chǎng)地的面積.(用含x的代數(shù)式表示)

2)若x20,求活動(dòng)場(chǎng)地?cái)U(kuò)大后增加的面積.

【答案】(1)4x2+6x4;(2)活動(dòng)場(chǎng)地?cái)U(kuò)大后增加的面積是316平方米.

【解析】

1)根據(jù)題意列出(2x+4)(2x5+4),化簡(jiǎn)即可求出答案.

2)根據(jù)題意列出4x2+6x42x2x5),將x=20代入即可求出答案.

1)根據(jù)題意可知:(2x+4)(2x5+4=2x+4)(2x1=4x2+6x4

24x2+6x42x2x5=4x2+6x44x2+10x=16x4

當(dāng)x=20時(shí),原式=16×204=316

答:活動(dòng)場(chǎng)地?cái)U(kuò)大后增加的面積是316平方米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)D為拋物線(xiàn)的頂點(diǎn).

1)求AB、C的坐標(biāo);

2)點(diǎn)M為線(xiàn)段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),過(guò)點(diǎn)Mx軸的垂線(xiàn),與直線(xiàn)AC交于點(diǎn)E,與拋物線(xiàn)交于點(diǎn)P,過(guò)點(diǎn)PPQ∥AB交拋物線(xiàn)于點(diǎn)Q,過(guò)點(diǎn)QQN⊥x軸于點(diǎn)N.若點(diǎn)P在點(diǎn)Q左邊,當(dāng)矩形PQMN的周長(zhǎng)最大時(shí),求△AEM的面積;

3)在(2)的條件下,當(dāng)矩形PMNQ的周長(zhǎng)最大時(shí),連接DQ.過(guò)拋物線(xiàn)上一點(diǎn)Fy軸的平行線(xiàn),與直線(xiàn)AC交于點(diǎn)G(點(diǎn)G在點(diǎn)F的上方).FG=DQ,求點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】轉(zhuǎn)轉(zhuǎn)盤(pán)和摸球是等可能概率下的經(jīng)典模型.

(1)在一個(gè)不透明的口袋中,放入除顏色外其余都相同的4個(gè)小球,其中1個(gè)白球,3個(gè)黑球攪勻后,隨機(jī)同時(shí)摸出2個(gè)球,求摸出兩個(gè)都是黑球的概率(要求釆用樹(shù)狀圖或列表法求解);

(2)如圖,轉(zhuǎn)盤(pán)的白色扇形和黑色扇形的圓心角分別為120°240°.讓轉(zhuǎn)盤(pán)自由轉(zhuǎn)動(dòng)2次,求指針2次都落在黑色區(qū)域的概率(要求采用樹(shù)狀圖或列表法求解)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是O的直徑,點(diǎn)C為O上一點(diǎn),CN為O的切線(xiàn),OMAB于點(diǎn)O,分別交AC、CN于D、M兩點(diǎn).

(1)求證:MD=MC;

(2)若O的半徑為5,AC=4,求MC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,且AB=AC,D是上一點(diǎn),AD與BC交于E,AF⊥DB,垂足為F.

(1)求證:∠ADB=∠CDE;

(2)若AF=DC=6,AB=10,求△DBC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O直徑,C、D為⊙O上的點(diǎn),∠ACD=2∠A,CE⊥DB交DB的延長(zhǎng)線(xiàn)于點(diǎn)E.

(1)求證:直線(xiàn)CE與⊙O相切;

(2)若AC=8,AB=10,求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線(xiàn)軸交于點(diǎn)和點(diǎn),與軸交于點(diǎn),連接交拋物線(xiàn)的對(duì)稱(chēng)軸于點(diǎn),是拋物線(xiàn)的頂點(diǎn).

求此拋物線(xiàn)的解析式;

直接寫(xiě)出點(diǎn)和點(diǎn)的坐標(biāo);

若點(diǎn)在第一象限內(nèi)的拋物線(xiàn)上,且,求點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市銷(xiāo)售櫻桃,已知櫻桃的進(jìn)價(jià)為15元/千克,如果售價(jià)為20元/千克,那么每天可售出250千克,如果售價(jià)為25元/千克,那么每天可獲利2000元,經(jīng)調(diào)查發(fā)現(xiàn):每天的銷(xiāo)售量y(千克)與售價(jià)x(元/千克)之間存在一次函數(shù)關(guān)系.

(1)求y與x之間的函數(shù)關(guān)系式;

(2)若櫻桃的售價(jià)不得高于28元/千克,請(qǐng)問(wèn)售價(jià)定為多少時(shí),該超市每天銷(xiāo)售櫻桃所獲的利潤(rùn)最大?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖△ABC中,∠ACB90°,以AC為直徑的OABD,過(guò)DO的切線(xiàn)交BC于點(diǎn)E,EFAB,垂足為F

(1)求證:DEBC;

(2)AC6,BC8,求SACDSEDF的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案