【題目】已知直線,直線和直線、交于點,點是直線上一動點.

1 2 3

(1)如圖1,當(dāng)點在線段上運動時,,之間存在什么數(shù)量關(guān)系?請你猜想結(jié)論并說明理由

(2)當(dāng)點、兩點的外側(cè)運動時(點與點、不重合,如圖2和圖3),上述(1)中的結(jié)論是否還成立?若不成立,請直接寫出,之間的數(shù)量關(guān)系,不必寫理由.

【答案】(1)見解析;(2)見解析.

【解析】

(1)過點P作PE∥l1,根據(jù)平行線的性質(zhì)即可得到,∠APE=∠PAC,∠BPE=∠PBD,根據(jù)∠APE+∠BPE=∠PAC+∠PBD,可得∠APB=∠PAC+∠PBD;
(2)根據(jù)(1)的方法,過點P作PE∥l1,根據(jù)平行線的性質(zhì),可得∠APE=∠PAC,∠PBD=∠BPE,圖2中根據(jù)∠APB=∠APE-∠BPE,可得∠PAC=∠APB+∠PBD;圖3中,根據(jù)∠APB=∠BPE-∠APE,可得∠PBD=∠PAC+∠APB.

解:(1)∠APB=∠PAC+∠PBD,
如圖1,過點P作PE∥l1,
∴∠APE=∠PAC,
∵l1∥l2,
∴PE∥l2
∴∠BPE=∠PBD,
∴∠APE+∠BPE=∠PAC+∠PBD,
∴∠APB=∠PAC+∠PBD;

(2)不成立,
如圖2:∠PAC=∠APB+∠PBD,
理由:過點P作PE∥l1,
∴∠APE=∠PAC,
∵l1∥l2,
∴PE∥l2,
∴∠BPE=∠PBD,
∵∠APB=∠APE-∠BPE=∠PAC-∠PBD,
∴∠PAC=∠APB+∠PBD;
如圖3:∠PBD=∠PAC+∠APB,
理由:過點P作PE∥l1,
∴∠APE=∠PAC,
∵l1∥l2,
∴PE∥l2,
∴∠BPE=∠PBD,
∵APB=∠BPE-∠APE=∠PBD-∠PAC,
∴∠PBD=∠PAC+∠APB.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了更好改善河流的水質(zhì),治污公司決定購買10臺污水處理設(shè)備.現(xiàn)有AB兩種型號的設(shè)備,其中每臺的價格,月處理污水量如下表:經(jīng)調(diào)查:購買一臺A型設(shè)備比購買一臺B型設(shè)備多2萬元,購買2A型設(shè)備比購買3B型設(shè)備少6萬元.

A

B

價格(萬元/臺)

a

b

處理污水量(噸/月)

240

180

1)求a,b的值;

2)治污公司經(jīng)預(yù)算購買污水處理設(shè)備的資金不超過105萬元,你認為該公司有哪幾種購買方案;

3)在(2)的條件下,若每月要求處理污水量不低于2040噸,為了節(jié)約資金,請你為治污公司設(shè)計一種最省錢的購買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,點C是⊙O上一點,連接BC,AC,過點C作直線CDAB于點D,點EAB上一點,直線CE交⊙O于點F,連接BF與直線CD延長線交于點G.求證:BC2BG·BF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在平面直角坐標(biāo)系xOy中,函數(shù)yx0)的圖象與一次函數(shù)ykxk的圖象的交點為Am,2).

1)求一次函數(shù)的解析式;

2)設(shè)一次函數(shù)ykxk的圖象與y軸交于點B,若Px軸上一點,且滿足△PAB的面積是6,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地電話撥號入網(wǎng)有兩種收費方式,用戶可以任選其一

A:計時制:0.05/分,B:包月制:50/月,此外,每一種上網(wǎng)時間都要收通信費0.02/

1)某用戶某月上網(wǎng)時間為x小時,請寫出兩種收費方式下該用戶應(yīng)該支付的費用(y表示)

2)若甲用戶估計一個月上網(wǎng)時間為20小時,乙用戶估計一個月上網(wǎng)時間為15小時,各選哪一種收費方式最合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,AC=6BC=8,點D為邊CB上的一個動點(點D不與點B重合),過DDOAB,垂足為O,點B′在邊AB上,且與點B關(guān)于直線DO對稱,連接DB′,AD

1)求證:DOB∽△ACB

2)若AD平分∠CAB,求線段BD的長;

3)當(dāng)AB′D為等腰三角形時,求線段BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2013年四川南充3分)如圖,把矩形ABCD沿EF翻折,點B恰好落在AD邊的B′處,若AE=2,DE=6,EFB=60°,則矩形ABCD的面積是【 】

A.12 B. 24 C. 12 D. 16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖ABC三個頂點的坐標(biāo)分別為A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形網(wǎng)格中,每個小正方形的邊長是1個單位長度.

(1)畫出ABC向上平移6個單位得到的A1B1C1

(2)以點C為位似中心,在網(wǎng)格中畫出A2B2C2,使A2B2C2ABC位似,且A2B2C2ABC的位似比為2:1,并直接寫出點A2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實踐:

氫動力汽車是一種真正實現(xiàn)零排放的交通工具,排放出的是純凈水,其具有無污染,零排放,儲量豐富等優(yōu)勢,因此,氫動力汽車是傳統(tǒng)汽車最理想的替代方案.某實驗團隊進行氫動力汽車實驗,在一條筆直的公路上有,兩地,小張駕駛氫動力汽車從地去地然后立即原路返回到地,小陳駕駛觀察車從地駛向.如圖是氫動力汽車、觀察車離地的距離和行駛時間之間的函數(shù)圖象,請根據(jù)圖象回答下列問題:

1,兩地的距離是______,小陳駕駛觀察車行駛的速度是______;

2)當(dāng)小張駕駛氫動力汽車從地原路返回地時,有一段時間小陳駕駛的觀察車與氫動力汽車之間的距離不超過30千米,請?zhí)骄看藭r行駛時間在哪一范圍內(nèi)?

查看答案和解析>>

同步練習(xí)冊答案