【題目】如圖所示,以的邊為直徑作,點(diǎn)C上,的弦,,過點(diǎn)C于點(diǎn)F,交于點(diǎn)G,過C的延長線于點(diǎn)E

1)求證:的切線;

2)求證:;

3)若,,求的長.

【答案】1)見解析;(2)見解析;(3BE

【解析】

1)連接OC,由∠A=∠CBD可得,進(jìn)而根據(jù)垂徑定理可得OCBD,然后根據(jù)CEBD即可推出OCCE,問題即得解決;

2)由AB為直徑可得∠ACB90°,然后根據(jù)同角的余角相等得出∠A=∠BCF,進(jìn)而可得∠BCF=∠CBD,進(jìn)一步即可證得結(jié)論;

3)根據(jù)(2)的結(jié)論和30°角的直角三角形的性質(zhì)可求得GFBF的長,再在直角△CEF中利用30°角的直角三角形的性質(zhì)可求得EF的長,進(jìn)一步即可求出結(jié)果.

1)證明:連接OC,如圖,

∵∠A=∠CBD,∴,∴OCBD

CEBD,∴OCCE

CE是⊙O的切線;

2)證明:∵AB為直徑,∴∠ACB90°,

CFAB,∴∠ACB=∠CFB90°,

∵∠ABC=∠CBF,∴∠A=∠BCF,

∵∠A=∠CBD,∴∠BCF=∠CBD,

CGBG;

3)解:∵∠DBA30°,,∴,

,,∴,,

CEBD,∴∠E=∠DBA30°,

BE

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市對(duì)火車站進(jìn)行了大規(guī)模的改建,改建后的火車站除原有的普通售票窗口外,新增了自動(dòng)打印車票的無人售票窗口.某日,從早8點(diǎn)開始到上午11點(diǎn),每個(gè)普通售票窗口售出的車票數(shù)y1(張)與售票時(shí)間x(小時(shí))的正比例函數(shù)關(guān)系滿足圖中的圖象,每個(gè)無人售票窗口售出的車票數(shù)y2(張)與售票時(shí)間x(小時(shí))的函數(shù)關(guān)系滿足圖中的圖象.

1)圖中圖象的前半段(含端點(diǎn))是以原點(diǎn)為頂點(diǎn)的拋物線的一部分,根據(jù)圖中所給數(shù)據(jù)確定拋物線的表達(dá)式為   ,其中自變量x的取值范圍是   ;

2)若當(dāng)天共開放5個(gè)無人售票窗口,截至上午9點(diǎn),兩種窗口共售出的車票數(shù)不少于1450張,則至少需要開放多少個(gè)普通售票窗口?

3)上午10點(diǎn)時(shí),每個(gè)普通售票窗口與每個(gè)無人售票窗口售出的車票數(shù)恰好相同,試確定圖中圖象的后半段一次函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,.點(diǎn)出發(fā)沿方向以每秒的速度向終點(diǎn)運(yùn)動(dòng).點(diǎn)出發(fā)沿方向以每秒的速度向點(diǎn)運(yùn)動(dòng)、同時(shí)當(dāng)點(diǎn)運(yùn)動(dòng)停止時(shí),點(diǎn)隨之停止運(yùn)動(dòng).過點(diǎn)交邊于點(diǎn),將的中點(diǎn)旋轉(zhuǎn)180°得到.過點(diǎn)交射線于點(diǎn),以為邊向右下方作正方形,設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為(秒).

1)直接寫出的長度(用含的代數(shù)式表示).

2)當(dāng)點(diǎn)落在上時(shí),求的值.

3)當(dāng)正方形有重合部分時(shí),求正方形重合圖形部分的周長與時(shí)間的函數(shù)解析式.

4)當(dāng)直線的某一邊垂直時(shí),直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 1、圖 2 均是 6×6 的正方形網(wǎng)格,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn),小正方形的邊長為 1,點(diǎn) A、B、CD 均在格點(diǎn)上.在圖 1、圖 2 中,只用無刻度的直尺,在給定的網(wǎng)格中按要求畫圖,所畫圖形的頂點(diǎn)均在格點(diǎn)上,不要求寫出畫法.

1)在圖 1 中以線段 AB 為邊畫一個(gè)ABM,使∠ABM=45°,且ABM 的面積為 6;

2)在圖 2 中以線段 CD 為邊畫一個(gè)四邊形 CDEF,使∠CDE=∠CFE=90°,且四邊形 CDEF 的面積為 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB8,AD6,點(diǎn)P為矩形ABCD內(nèi)一點(diǎn),滿足∠APB90°,連結(jié)C、P兩點(diǎn),并延長CP交直線AB于點(diǎn)E.若點(diǎn)P是線段CE的中點(diǎn),則BE____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,動(dòng)點(diǎn)P沿B→A→D→C→B路線運(yùn)動(dòng),點(diǎn)MAB邊上的一點(diǎn),且MBAB,已知AB4,BC2AP2MP,則點(diǎn)P到邊AD的距離為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O為△ABC外接圓的圓心,以AB為腰作等腰△ABD,使底邊AD經(jīng)過點(diǎn)O,并分別交BC于點(diǎn)E、交⊙O于點(diǎn)F,若∠BAD30°

1)求證:BD是⊙O的切線;

2)當(dāng)CA2CECB時(shí),

①求∠ABC的度數(shù);

的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某年級(jí)共有150名女生,為了解該年級(jí)女生實(shí)心球成績(單位:米)和一分鐘仰臥起坐成績(單位:個(gè))的情況,從中隨機(jī)抽取30名女生進(jìn)行測(cè)試,獲得了他們的相關(guān)成績,并對(duì)數(shù)據(jù)進(jìn)行整理、描述和分析.下面給出了部分信息.

a. 實(shí)心球成績的頻數(shù)分布表如下:

分組

頻數(shù)

2

m

10

6

2

1

b. 實(shí)心球成績?cè)?/span>這一組的是:

a7.0 7.0 7.0 7.1 7.1 7.1 7.2 7.2 7.3 7.3

c. 一分鐘仰臥起坐成績?nèi)缦聢D所示:

根據(jù)以上信息,回答下列問題:

1 ①表中m的值為__________;

②一分鐘仰臥起坐成績的中位數(shù)為__________;

2)若實(shí)心球成績達(dá)到7.2米及以上時(shí),成績記為優(yōu)秀.

①請(qǐng)估計(jì)全年級(jí)女生實(shí)心球成績達(dá)到優(yōu)秀的人數(shù);

②該年級(jí)某班體育委員將本班在這次抽樣測(cè)試中被抽取的8名女生的兩項(xiàng)成績的數(shù)據(jù)抄錄如下:

女生代碼

A

B

C

D

E

F

G

H

實(shí)心球

8.1

7.7

7.5

7.5

7.3

7.2

7.0

6.5

一分鐘仰臥起坐

*

42

47

*

47

52

*

49

其中有3名女生的一分鐘仰臥起坐成績未抄錄完整,但老師說這8名女生中恰好有4人兩項(xiàng)測(cè)試成績都達(dá)到了優(yōu)秀,于是體育委員推測(cè)女生E的一分鐘仰臥起坐成績達(dá)到了優(yōu)秀,你同意體育委員的說法嗎?并說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地政府計(jì)劃為農(nóng)戶購買農(nóng)機(jī)設(shè)備提供補(bǔ)貼.其中購買型、型設(shè)備農(nóng)民所投資的金額與政府補(bǔ)貼的額度存在下表所示的函數(shù)對(duì)應(yīng)關(guān)系.

型號(hào)

金額

型設(shè)備

型設(shè)備

投資金額x(萬元)

x

5

x

2

4

補(bǔ)貼金額y(萬元)

y1kxk≠0

2

y2ax2+bxa≠0

2.8

4

1)分別求y1y2的函數(shù)解析式;

2)有一農(nóng)戶共投資10萬元購買型、型兩種設(shè)備,兩種設(shè)備的投資均為整數(shù)萬元,要想獲得最大補(bǔ)貼金額,應(yīng)該如何購買?能獲得的最大補(bǔ)貼金額為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案