【題目】如圖1,已知正方形ABCD的邊CD在正方形DEFG的邊DE上,連接AE,GC.
(1)試猜想AE與GC有怎樣的位置關(guān)系,并證明你的結(jié)論;
(2)將正方形DEFG繞點(diǎn)D按順時(shí)針?lè)较蛐D(zhuǎn),使點(diǎn)E落在BC邊上,如圖2,連接AE和GC.你認(rèn)為(1)中的結(jié)論是否還成立?若成立,給出證明;若不成立,請(qǐng)說(shuō)明理由.
【答案】(1)AE⊥CE,證明見(jiàn)解析;(2)成立,證明見(jiàn)解析
【解析】
試題(1)觀察圖形,AE、CG的位置關(guān)系可能是垂直,下面著手證明.由于四邊形ABCD、DEFG都是正方形,易證得△ADE≌△CDG,則∠1=∠2,由于∠2、∠3互余,所以∠1、∠3互余,由此可得AH⊥CG.
(2)題(1)的結(jié)論仍然成立,參照(1)題的解題方法,可證△ADE≌△CDG,得∠5=∠4,由于∠4、∠7互余,而∠5、∠6互余,那么∠6=∠7;由圖知∠AEB=∠CEH=90°-∠6,即∠7+∠CEH=90°,由此得證.
試題解析:(1)AE⊥GC;
證明:延長(zhǎng)GC交AE于點(diǎn)H,
在正方形ABCD與正方形DEFG中,
AD=DC,∠ADE=∠CDG=90°,
DE=DG,
∴△ADE≌△CDG,
∴∠1=∠2;
∵∠2+∠3=90°,
∴∠1+∠3=90°,
∴∠AHG=180°-(∠1+∠3)=180°-90°=90°,
∴AE⊥GC.
(2)成立;
證明:延長(zhǎng)AE和GC相交于點(diǎn)H,
在正方形ABCD和正方形DEFG中,
AD=DC,DE=DG,∠ADC=∠DCB=∠B=∠BAD=∠EDG=90°,
∴∠1=∠2=90°-∠3;
∴△ADE≌△CDG,
∴∠5=∠4;
又∵∠5+∠6=90°,∠4+∠7=180°-∠DCE=180°-90°=90°,
∴∠6=∠7,
又∵∠6+∠AEB=90°,∠AEB=∠CEH,
∴∠CEH+∠7=90°,
∴∠EHC=90°,
∴AE⊥GC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】菱形中,,,為上一個(gè)動(dòng)點(diǎn),,連接并延長(zhǎng)交延長(zhǎng)線于點(diǎn).
(1)如圖1,求證:;
(2)當(dāng)為直角三角形時(shí),求的長(zhǎng);
(3)當(dāng)為的中點(diǎn),求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市在黨中央實(shí)施“精準(zhǔn)扶貧”政策的號(hào)召下,大力開(kāi)展科技扶貧工作,幫助農(nóng)民組建農(nóng)副產(chǎn)品銷(xiāo)售公司,某農(nóng)副產(chǎn)品的年產(chǎn)量不超過(guò)100萬(wàn)件,該產(chǎn)品的生產(chǎn)費(fèi)用y(萬(wàn)元)與年產(chǎn)量x(萬(wàn)件)之間的函數(shù)圖象是頂點(diǎn)為原點(diǎn)的拋物線的一部分(如圖①所示);該產(chǎn)品的銷(xiāo)售單價(jià)z(元/件)與年銷(xiāo)售量x(萬(wàn)件)之間的函數(shù)圖象是如圖②所示的一條線段,生產(chǎn)出的產(chǎn)品都能在當(dāng)年銷(xiāo)售完,達(dá)到產(chǎn)銷(xiāo)平衡,所獲毛利潤(rùn)為W萬(wàn)元.(毛利潤(rùn)=銷(xiāo)售額﹣生產(chǎn)費(fèi)用)
(1)請(qǐng)直接寫(xiě)出y與x以及z與x之間的函數(shù)關(guān)系式;(寫(xiě)出自變量x的取值范圍)
(2)求W與x之間的函數(shù)關(guān)系式;(寫(xiě)出自變量x的取值范圍);并求年產(chǎn)量多少萬(wàn)件時(shí),所獲毛利潤(rùn)最大?最大毛利潤(rùn)是多少?
(3)由于受資金的影響,今年投入生產(chǎn)的費(fèi)用不會(huì)超過(guò)360萬(wàn)元,今年最多可獲得多少萬(wàn)元的毛利潤(rùn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的正方形網(wǎng)格中,的頂點(diǎn)均在格點(diǎn)上,在所給直角坐標(biāo)系中解答下列問(wèn)題:
分別寫(xiě)出點(diǎn)、兩點(diǎn)的坐標(biāo);
畫(huà)出以為旋轉(zhuǎn)中心,將順時(shí)針旋轉(zhuǎn)得到的;
作出關(guān)于坐標(biāo)原點(diǎn)成中心對(duì)稱的;
作出點(diǎn)關(guān)于軸的對(duì)稱點(diǎn).若點(diǎn)向右平移(取整數(shù))個(gè)單位長(zhǎng)度后落在的內(nèi)部,請(qǐng)直接寫(xiě)出的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,水渠邊有一棵大木瓜樹(shù),樹(shù)干DO(不計(jì)粗細(xì))上有兩個(gè)木瓜A、B(不計(jì)大。瑯(shù)干垂直于地面,量得AB=2米,在水渠的對(duì)面與O處于同一水平面的C處測(cè)得木瓜A的仰角為45°、木瓜B的仰角為30°.求C處到樹(shù)干DO的距離CO.(結(jié)果精確到1米)(參考數(shù)據(jù):,
)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一座鋼結(jié)構(gòu)橋梁的框架是△ABC,水平橫梁BC長(zhǎng)18米,中柱AD高6米,其中D是BC的中點(diǎn),且AD⊥BC.
(1)求sinB的值;
(2)現(xiàn)需要加裝支架DE、EF,其中點(diǎn)E在AB上,BE=2AE,且EF⊥BC,垂足為點(diǎn)F,求支架DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】鄭州市農(nóng)業(yè)路高架橋二層的開(kāi)通,較大程度緩解了市內(nèi)交通的壓力,最初設(shè)計(jì)南陽(yáng)路口上橋匝道時(shí),其坡角為15°,后來(lái)從安全角度考慮將匝道坡角改為5°(見(jiàn)示意圖),如果高架橋高CD=6米,匝道BD和AD每米造價(jià)均為4 000元,那么設(shè)計(jì)優(yōu)化后修建匝道AD的投資將增加多少元?(參考數(shù)據(jù):sin5°≈0.08,sin15°≈0.25,tan5°≈0.09,tan15°≈0.27,結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商人制成了一個(gè)如圖所示的轉(zhuǎn)盤(pán),取名為“開(kāi)心大轉(zhuǎn)盤(pán)”,游戲規(guī)定:參與者自由轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán),轉(zhuǎn)盤(pán)停止后,若指針指向字母“A”,則收費(fèi)2元,若指針指向字母“B”,則獎(jiǎng)勵(lì)3元;若指針指向字母“C”,則獎(jiǎng)勵(lì)1元.一天,前來(lái)尋開(kāi)心的人轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)80次,你認(rèn)為該商人是盈利的可能性大還是虧損的可能性大?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠1=∠2,要使△ABD≌△ACD,需從下列條件中增加一個(gè),錯(cuò)誤的選法是( )
A.∠ADB=∠ADCB.∠B=∠CC.AB=ACD.DB=DC
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com