如圖,在三角形紙片ABC中,AC=BC.把△ABC沿著AC翻折,點(diǎn)B落在點(diǎn)D處,連接BD.如果∠BAC=40°,則∠CBD的度數(shù)為


  1. A.
  2. B.
    10°
  3. C.
    20°
  4. D.
    30°
B
分析:由AC=BC,∠BAC=40°,根據(jù)等邊對(duì)等角的性質(zhì),即可求得∠ABC的度數(shù),又由折疊的性質(zhì),求得∠ABD的度數(shù),繼而求得∠CBD的度數(shù).
解答:∵AC=BC,∠BAC=40°,
∵∠ABC=∠BAC=40°,
由折疊的性質(zhì)可得:∠CAD=∠BAC=40°,AB=AD,
∴∠BAD=∠CAD+∠BAC=80°,
∴∠ABD==50°,
∴∠CBD=∠ABD-∠ABD=10°.
故選B.
點(diǎn)評(píng):此題考查了折疊的性質(zhì)與等腰三角形的性質(zhì).此題難度不大,注意折疊中的對(duì)應(yīng)關(guān)系,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在三角形紙片ABC中,∠ACB=90°,BC=3,AB=6.在AC上取一點(diǎn)E,以BE為折痕,使AB的一部分與BC重合,A與BC延長(zhǎng)線上的點(diǎn)D重合,則CE的長(zhǎng)度為( 。
A、3
B、6
C、
3
D、2
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在三角形紙片ABC中,∠A=65°,∠B=75°,將紙片的一角折疊(折痕為DE),使點(diǎn)C落在△ABC內(nèi)的C′處,若∠AEC′=20°,則∠BDC′的度數(shù)是( 。
A、30°B、40°C、50°D、60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在三角形紙片ABC中,∠ACB=90°,BC=3,AB=6,在AC上取一點(diǎn)E,以BE為折痕,使AB的一部分與BC重合,A與BC延長(zhǎng)線上的點(diǎn)D重合,則CE的長(zhǎng)度為(  )
A、3
B、6
C、2
3
D、
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在三角形紙片ABC中,AC=6,∠A=30°,∠C=90°,將∠A沿DE折疊,使點(diǎn)A與點(diǎn)B重合,則折痕DE的長(zhǎng)為( 。
A、1
B、
2
C、
3
D、2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•太原一模)如圖,在三角形紙片ABC中,BC=3,AB=5,∠BCA=90°,將其對(duì)折后點(diǎn)A落在BC的延長(zhǎng)線上,折痕與AC交于點(diǎn)E,則CE的長(zhǎng)是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案