【題目】如圖,PA、PB切⊙O于A、B兩點(diǎn),CD切⊙O于點(diǎn)E,分別交PA、PB于點(diǎn)C、D.若PA、PB的長(zhǎng)是關(guān)于x的一元二次方程x2﹣mx+m﹣1=0的兩個(gè)根,求△PCD的周長(zhǎng).

【答案】解:∵PA、PB的長(zhǎng)是關(guān)于x的一元二次方程x2﹣mx+m﹣1=0的兩個(gè)根,
∴PA+PB=m,PAPB=m﹣1,
∵PA、PB切⊙O于A、B兩點(diǎn),
∴PA=PB=,
=m﹣1,
即m2﹣4m+4=0,
解得:m=2,
∴PA=PB=1,
∵PA、PB切⊙O于A、B兩點(diǎn),CD切⊙O于點(diǎn)E,
∴AD=ED,BC=EC,
∴△PCD的周長(zhǎng)為:PD+CD+PC=PD+DE+EC+PC=PD+AD+BC+PC=PA+PB=2.
【解析】由PA、PB切⊙O于A、B兩點(diǎn),CD切⊙O于點(diǎn)E,根據(jù)切線長(zhǎng)定理,可得PA=PB,又由PA、PB的長(zhǎng)是關(guān)于x的一元二次方程x2﹣mx+m﹣1=0的兩個(gè)根,根據(jù)根與系數(shù)的關(guān)系,可求得PA與PB的長(zhǎng),又由CD切⊙O于點(diǎn)E,即可得△PCD的周長(zhǎng)等于PA+PB.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解切線的性質(zhì)定理的相關(guān)知識(shí),掌握切線的性質(zhì):1、經(jīng)過切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過切點(diǎn)垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點(diǎn)的半徑.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在三角形ABC中,BC=14,AC=9,AB=13,它的內(nèi)切圓分別和BC、AC、AB切于點(diǎn)D、E、F,那么AF、BD、CE的長(zhǎng)分別為(  )

A.AF=4,BD=9,CE=5
B.AF=4,BD=5,CE=9
C.AF=5,BD=4,CE=9
D.AF=9,BD=4,CE=5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上,點(diǎn)A表示-5,點(diǎn)B表示10.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿?cái)?shù)軸正方向以每秒1個(gè)單位的速度勻速運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿?cái)?shù)軸負(fù)方向以每秒2個(gè)單位的速度勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t.

(1)當(dāng)t 秒時(shí),P,Q兩點(diǎn)相遇,求出相遇點(diǎn)所對(duì)應(yīng)的數(shù);

(2)當(dāng)t為何值時(shí),P,Q兩點(diǎn)的距離為3個(gè)單位長(zhǎng)度,并求出此時(shí)點(diǎn)P對(duì)應(yīng)的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

(1)(10xy3)·2xy4z;

(2)(4x)(2x22x1);

(3)0.4x2y·(2x)3·xy3;

(4)3a2b(a2ab)2a2(b3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度y(米)與登山時(shí)間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:

(1)甲登山上升的速度是每分鐘   米,乙在A地時(shí)距地面的高度b   米.

(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請(qǐng)求出乙登山全程中,距地面的高度y(米)與登山時(shí)間x(分)之間的函數(shù)關(guān)系式.

(3)登山多長(zhǎng)時(shí)間時(shí),甲、乙兩人距地面的高度差為50米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x+1x軸、y軸分別交于點(diǎn)A、B,以線段AB為直角邊在第﹣象限內(nèi)作等腰直角△ABC,∠BAC=90°,

(1)求點(diǎn)A、B、C的坐標(biāo);

(2)如果在第二象限內(nèi)有﹣點(diǎn)P(a,),且△ABP的面積與△ABC的面積相等,求a的值;

(3)請(qǐng)直接寫出點(diǎn)Q的坐標(biāo),使得以Q、A、C為頂點(diǎn)的三角形和△ABC全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A,B兩點(diǎn)在數(shù)軸上的位置如圖所示,O為原點(diǎn),現(xiàn)A,B兩點(diǎn)分別以1個(gè)單位長(zhǎng)度/秒的速度同時(shí)向左運(yùn)動(dòng)。

(1)幾秒后,原點(diǎn)恰好在A,B兩點(diǎn)正中間?

(2)幾秒后,恰好有OA:OB=1:2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知⊙O與直線l相切于A點(diǎn),點(diǎn)P、Q同時(shí)從A點(diǎn)出發(fā),P沿著直線l向右、Q沿著圓周按逆時(shí)針以相同的速度運(yùn)動(dòng),當(dāng)Q運(yùn)動(dòng)到點(diǎn)A時(shí),點(diǎn)P也停止運(yùn)動(dòng).連接OQ、OP(如圖),則陰影部分面積S1、S2的大小關(guān)系是( 。

A.S1=S2
B.S1≤S2
C.S1≥S2
D.先S1<S2 , 再S1=S2 , 最后S1>S2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知整數(shù)a1,a2,a3,a4,…滿足下列條件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…依此類推,則a2015的值為( 。

A. ﹣2015 B. ﹣2014 C. ﹣1007 D. ﹣1008

查看答案和解析>>

同步練習(xí)冊(cè)答案