【題目】已知:A(1,0),B(0,4)C(4,2)

1)在坐標系中描出各點(小正方形網(wǎng)格的長度為單位1),畫出ABC;(三點及連線請加黑描重)

2)若A1B1C1ABC關(guān)于y軸對稱,請在圖中畫出A1B1C1;

3)點Qx軸上的一動點,則使QB+QC最小的點Q坐標為   

【答案】1)答案見解析;(2)答案見解析;(3(,0)

【解析】

1)依據(jù)A1,0),B0,4),C4,2),即可描出各點,畫出ABC

2)依據(jù)軸對稱的性質(zhì),即可得到A1B1C1

3)作點C關(guān)于x軸的對稱點C'4,﹣2),連接BC',依據(jù)兩點之間,線段最短,即可得到點Q的位置.

解:(1)如圖所示,ABC即為所求;

2)如圖所示,A1B1C1即為所求;

3)作點C關(guān)于x軸的對稱點C'4,﹣2),連接BC',交x軸于Q,

B,C'的坐標可得直線BC'的解析式為y=﹣x+4,

y0,則x,

∴使QB+QC最小的點Q坐標為(,0).

故答案為:(0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖為二次函數(shù)y=ax2+bx+c的圖象,在下列說法中:①ac<0;a+b+c>0;③方程ax2+bx+c=0的根是x1=﹣1,x2=3; b2﹣4ac>0;⑤當x>1時,yx的增大而增大;正確的說法有(  )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,頂點為C的拋物線y=ax2+bx(a>0)經(jīng)過點Ax軸正半軸上的點B,連接OC、OA、AB,已知OA=OB=2,∠AOB=120°.

(1)求這條拋物線的表達式;

(2)過點CCE⊥OB,垂足為E,點Py軸上的動點,若以O、C、P為頂點的三角形與△AOE相似,求點P的坐標;

(3)若將(2)的線段OE繞點O逆時針旋轉(zhuǎn)得到OE′,旋轉(zhuǎn)角為α(0°<α<120°),連接E′A、E′B,求E′A+E′B的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊三角形的邊長為4,的中心,.繞點旋轉(zhuǎn),分別交線段兩點,連接,給出下列四個結(jié)論:;;③四邊形的面積始終等于;④△周長的最小值為6,上述結(jié)論中正確的個數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程(組)解應(yīng)用題:

為順利通過國家義務(wù)教育均衡發(fā)展驗收,我市某中學(xué)配備了兩個多媒體教室,購買了筆記本電腦和臺式電腦共120臺,購買筆記本電腦用了7.2萬元,購買臺式電腦用了24萬元,已知筆記本電腦單價是臺式電腦單價的1.5倍,那么筆記本電腦和臺式電腦的單價各是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(問題解決)

一節(jié)數(shù)學(xué)課上,老師提出了這樣一個問題:如圖1,點P是正方形ABCD內(nèi)一點,PA=1,PB=2,PC=3.你能求出∠APB的度數(shù)嗎?

小明通過觀察、分析、思考,形成了如下思路:

思路一:將BPC繞點B逆時針旋轉(zhuǎn)90°,得到BP′A,連接PP′,求出∠APB的度數(shù);

思路二:將APB繞點B順時針旋轉(zhuǎn)90°,得到CP'B,連接PP′,求出∠APB的度數(shù).

請參考小明的思路,任選一種寫出完整的解答過程.

(類比探究)

如圖2,若點P是正方形ABCD外一點,PA=3,PB=1,PC=,求∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的一條弦,EAB的中點,過點EECOA于點C,過點B作⊙O的切線交CE的延長線于點D.

(1)求證:DB=DE;

(2)若AB=12,BD=5,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在每個小正方形的邊長均為1的方格紙中有線段AB,其中點A、B均在小正方形的頂點上.

1)在方格紙中畫出以BC為底的鈍角等腰三角形ABC,且點C在小正方形的頂點上;

2)將(1)中的△ABC繞點C逆時針旋轉(zhuǎn)90°得到△DEC(點A的對應(yīng)點是點D,點B的對應(yīng)點是點E),畫出△CDE;

3)在(2)的條件下,連接BE,請直接寫出△BCE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點M為直線AB上一動點,△PAB,△PMN都是等邊三角形,連接BN,

(1)M點如圖1的位置時,如果AM=5,BN的長;

(2)M點在如圖2位置時,線段ABBM、BN三者之間的數(shù)量關(guān)系__________________

(3)M點在如圖3位置時,當BM=AB時,證明:MNAB

查看答案和解析>>

同步練習(xí)冊答案