【題目】如圖,四邊形 ABCD 中,∠A=160°,∠B=50°,∠ADC、∠BCD 的平分線相交于點E,則∠CED=_____

【答案】105°

【解析】

本題根據(jù)四邊形內(nèi)角和為360°可求出∠ADC+BCD=150°.根據(jù)兩條角平分線可得到∠EDC+ECD=(∠ADC+BCD),再根據(jù)三角形內(nèi)角和得到∠CED=180°-(∠EDC+ECD)解答本題.

∵∠A=160°,∠B=50°

∴∠ADC+BCD=360°-160°-50°=150°

DE是∠ADC的角平分線,EC是∠BCD的角平分線

∴∠EDC=ADC,∠ECD=BCD

∴∠CED=180°-(∠EDC+ECD

=180°-ADC+BCD

=180°-(∠ADC+BCD

=180°-×150°

=105°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場銷售一種成本為每件30元的商品,銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價x(元)之間的關(guān)系可近似看作一次函數(shù)y=-10x+600,商場銷售該商品每月獲得利潤為w(元).
(1)求w與x之間的函數(shù)關(guān)系式;
(2)如果商場銷售該商品每月想要獲得2000元的利潤,那么每月成本至少多少元?
(3)為了保護環(huán)境,政府部門要求用更加環(huán)保的新產(chǎn)品替代該商品,商場銷售新產(chǎn)品,每月的銷量與銷售價格之間的關(guān)系與原產(chǎn)品的銷售情況相同,新產(chǎn)品的成本每件32元,若新產(chǎn)品每月的銷售量不低于200件時,政府部門給予每件4元的補貼,試求定價多少元時,每月銷售新產(chǎn)品的利潤最大?求出最大的利潤。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠ABC>ADC,且∠BAD 的平分線 AE 與∠BCD 的平分線 CE 交于點 E,則∠AEC與∠ADC、ABC 之間存在的等量關(guān)系是(

A. AEC=ABC﹣2ADC B. AEC=

C. AEC= ABC﹣ADC D. AEC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,點為平面內(nèi)一點,連接.

1)探究:

如圖1,,則的度數(shù)是___________;

如圖2,則的度數(shù)是___________.

2)在圖2中試探究,,之間的數(shù)量關(guān)系,并說明理由.

3)拓展探究:當(dāng)點在直線外,如圖34所示的位置時,請分別直接寫出,之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角三角形的斜邊軸的正半軸上,點與原點重合,點的坐標(biāo)是,且,若將繞著點旋轉(zhuǎn)后30°,點點分別落在點和點處,那么直線的解析式是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖像與反比例函數(shù)的圖像相交于點,一次函數(shù)軸相交于點,與軸相交于點

1)求的值;

2)點軸正半軸上,且的面積為1,求點坐標(biāo);

3)在(2)的條件下,點是一次函數(shù)上一點,點是反比例函數(shù)圖像上一點,且點、都在軸上方.如果以、、為頂點的四邊形為平行四邊形,請直接寫出點、的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,AC與BD相交于點O,AB=AC,延長BC到點E,使CE=BC,連接AE,分別交BD、CD于點F、G.
(1)求證:△ADB≌△CEA;
(2)若BD=9,求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰三角形一底角平分線與另一腰所成銳角為75°,則等腰三角形的頂角的大小為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在平面直角坐標(biāo)系中,四邊形ABCD是長方形,∠A=∠B=∠C=∠D=90°,AB∥CD,AB=CD=8cm,AD=BC=6cm,D點與原點重合,坐標(biāo)為(0,0)

(1)寫出點B的坐標(biāo);

(2)動點P從點A出發(fā)以每秒3個單位長度的速度向終點B勻速運動,動點Q從點C出發(fā)以每秒4個單位長度的速度沿射線CD方向勻速運動,若P,Q兩點同時出發(fā),設(shè)運動時間為t,當(dāng)t為何值時,PQ∥BC;

(3)在Q的運行過程中,當(dāng)Q運動到什么位置時,使△ADQ的面積為9,求此時Q點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案