【題目】如圖,二次函數(shù)yax2+bx+ca≠0)的圖象與x軸交于AB兩點(diǎn),與y軸交于C點(diǎn),且對(duì)稱軸為x1,點(diǎn)B坐標(biāo)為(﹣10),則下面的四個(gè)結(jié)論,其中正確的個(gè)數(shù)為( 。

2a+b04a2b+c0ac0④當(dāng)y0時(shí),﹣1x4

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

【答案】B

【解析】

①函數(shù)對(duì)稱軸為:x=﹣1,解得:b=﹣2a,即可求解;②x=﹣2時(shí),y4a2b+c0,即可求解;③a0,c0,故ac0,即可求解;④當(dāng)y0時(shí),﹣1x3,即可求解.

點(diǎn)B坐標(biāo)為(﹣1,0),對(duì)稱軸為x1,則點(diǎn)A3,0),

①函數(shù)對(duì)稱軸為:x=﹣1,解得:b=﹣2a,故①正確,符合題意;

x=﹣2時(shí),y4a2b+c0,故②正確,符合題意;

a0,c0,故ac0,故③錯(cuò)誤,不符合題意;

④當(dāng)y0時(shí),﹣1x3,故④錯(cuò)誤,不符合題意;

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,四邊形TABC的頂點(diǎn)坐標(biāo)分別為T(1,1),A(2,3),B(3,3),C(4,2).

(1)以點(diǎn)T(1,1)為位似中心,在位似中心的同側(cè)將四邊形TABC放大為原來的2倍,放大后點(diǎn)A,B,C的對(duì)應(yīng)點(diǎn)分別為A′,B′,C′畫出四邊形TA′B′C′;

(2)寫出點(diǎn)A′,B′,C′的坐標(biāo):

A′   ,B′   ,C′   

(3)(1)中,若D(a,b)為線段AC上任一點(diǎn),則變化后點(diǎn)D的對(duì)應(yīng)點(diǎn)D′的坐標(biāo)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖△ABC≌△DEC,公共頂點(diǎn)為C,BDE上,則有結(jié)論①∠ACD=∠BCE=∠ABD;②∠DAC+DBC180°;③△ADC∽△BEC;④CDAB,其中成立的是(  )

A.①②③B.只有②④C.只有①和②D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀下列材料,然后解答問題.

材料:從三角形(不是等腰三角形)一個(gè)頂點(diǎn)引出一條射線與對(duì)邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個(gè)三角形分割成兩個(gè)小三角形,如果分得的兩個(gè)小三角形中一個(gè)為等腰三角形,另一個(gè)與原三角形相似,我們把這條線段叫做這個(gè)三角形的完美分割線例如:如圖AD把△ABC分成△ABD與△ADC,若△ABD是等腰三角形,且△ADC∽△BAC,那么AD就是△ABC的完美分割線.

解答下列問題:

1)如圖,在△ABC中,∠B40°,AD是△ABC的完美分割線,且△ABD是以AD為底邊的等腰三角形,則∠CAD   度.

2)在△ABC中,∠B42°,AD是△ABC的完美分割線,且△ABD是等腰三角形,求∠BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx3x軸交于AB兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),A(﹣10),B3,0),直線l與拋物線交于A,C兩點(diǎn),其中C點(diǎn)的橫坐標(biāo)為2

1)求拋物線的函數(shù)解析式;

2P是線段AC上的一個(gè)動(dòng)點(diǎn),過P點(diǎn)作y軸的平行線交拋物線于E點(diǎn),求線段PE長(zhǎng)度的最大值;

3)點(diǎn)G是拋物線上的動(dòng)點(diǎn),在x軸上是否存在點(diǎn)F,使A,C,F,G這樣的四個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出所有滿足條件的F點(diǎn)坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知O的直徑AB垂直于弦CD于點(diǎn)E,連接CO并延長(zhǎng)交AD于點(diǎn)F,且CFAD

(1) 求證:EOB的中點(diǎn)

(2) AB8,求CD的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,ADBC于點(diǎn)DBC=10cm,AD=8cm.點(diǎn)P從點(diǎn)B出發(fā),在線段BC上以每秒3cm的速度向點(diǎn)C勻速運(yùn)動(dòng),與此同時(shí),垂直于AD的直線m從底邊BC出發(fā),以每秒2cm的速度沿DA方向勻速平移,分別交AB、AC、ADE、FH,當(dāng)點(diǎn)P到達(dá)點(diǎn)C時(shí),點(diǎn)P與直線m同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t0).
1)當(dāng)t=2時(shí),連接DEDF,求證:四邊形AEDF為菱形;
2)在整個(gè)運(yùn)動(dòng)過程中,問所形成的△PEF是否存在最大面積;如果存在請(qǐng)求出,如果不存在說明理由.
3)是否存在某一時(shí)刻t,使△PEF為直角三角形?若存在,請(qǐng)求出此時(shí)刻t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,,點(diǎn)上,于點(diǎn),于點(diǎn),當(dāng)時(shí),________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小亮為了測(cè)量校園里教學(xué)樓AB的高度,將測(cè)角儀CD豎直放置在與教學(xué)樓水平距離為18m的地面上,若測(cè)角儀的高度為1.5m,測(cè)得教學(xué)樓的頂部A處的仰角為30°,則教學(xué)樓的高度是(    

A.55.5mB.54mC.19.5mD.18m

查看答案和解析>>

同步練習(xí)冊(cè)答案