【題目】如圖,在正方形網(wǎng)格中,四邊形TABC的頂點坐標分別為T(1,1),A(2,3),B(3,3),C(4,2).

(1)以點T(1,1)為位似中心,在位似中心的同側(cè)將四邊形TABC放大為原來的2倍,放大后點A,B,C的對應(yīng)點分別為A′,B′,C′畫出四邊形TA′B′C′;

(2)寫出點A′,B′,C′的坐標:

A′   ,B′   ,C′   

(3)(1)中,若D(a,b)為線段AC上任一點,則變化后點D的對應(yīng)點D′的坐標為   

【答案】(1)詳見解析;(2)A′(3,5),B′(5,5),C′(7,3);(3)點D′的坐標為(2a﹣1,2b﹣1).

【解析】

(1)利用位似圖形的性質(zhì)得出變化后圖形即可;

(2)利用已知圖形得出對應(yīng)點坐標;

(3)利用各點變化規(guī)律,進而得出答案.

1)如圖所示:四邊形TA′B′C′即為所求;

(2)A′(3,5),B′(5,5),C′(7,3);

故答案為:(3,5),(5,5),(7,3);

(3)在(1)中,∵A(2,3),B(3,3),C(4,2),

A′(2×2﹣1=3,2×3﹣1=5),B′(2×3﹣1=5,2×3﹣1=5),C′(2×4﹣1=7,2×2﹣1=3);

∴D(a,b)為線段AC上任一點,

則變化后點D的對應(yīng)點D′的坐標為(2a﹣1,2b﹣1).

故答案為:(2a﹣1,2b﹣1).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx經(jīng)過點A(﹣1,)及原點,交x軸于另一點C(2,0),點D(0,m)是y軸正半軸上一動點,直線AD交拋物線于另一點B.

(1)求拋物線的解析式;

(2)如圖1,連接AO、BO,若OAB的面積為5,求m的值;

(3)如圖2,作BEx軸于E,連接AC、DE,當D點運動變化時,AC、DE的位置關(guān)系是否變化?請證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖象經(jīng)過點A(3,3)、B(4,0)和原點O.P為二次函數(shù)圖象上的一個動點,過點Px軸的垂線,垂足為D(m,0),并與直線OA交于點C.

(1)求直線OA和二次函數(shù)的解析式;

(2)當點P在直線OA的上方時,

①當PC的長最大時,求點P的坐標;

②當SPCO=SCDO時,求點P的坐標.

    

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】填空,完成下列說理過程

如圖,點AO,B在同一條直線上,OD,OE分別平分∠AOC和∠BOC

(1)求∠DOE的度數(shù);

(2)如果∠COD=65°,求∠AOE的度數(shù).

解:(1)如圖,因為OD是∠AOC的平分線,

所以∠COD=AOC

因為OE是∠BOC的平分線,

所以∠COE=

所以∠DOE=COD+   =(AOC+BOC)=AOB=   °.

(2)(1)可知

BOE=COE=   ﹣∠COD=   °.

所以∠AOE=   ﹣∠BOE=   °.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:在平面直角坐標系,直線分別交、軸于點A、B兩點,OA=5,OAB=60°.

(1)如圖1,求直線AB的解析式;

(2)如圖2,P為直線AB上一點,連接OP,DOA延長線上,分別過點P、DOA、OP的平行線,兩平行線交于點C,連接AC,設(shè)AD=m,ABC的面積為S,Sm的函數(shù)關(guān)系式;

(3)如圖3,(2)的條件下,PA上取點E ,使PE=AD, 連接EC,DE,若∠ECD=60°,四邊形ADCE的周長等于22,求S的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學將組織七年級學生春游一天,由王老師和甲、乙兩同學到客車租賃公司洽談租車事宜

1兩同學向公司經(jīng)理了解租車的價格公司經(jīng)理對他們說公司有45座和60座兩種型號的客車可供租用,60座的客車每輛每天的租金比45座的貴100元王老師說我們學校八年級昨天在這個公司租了5輛45座和2輛60座的客車,一天的租金為1600元,你們能知道45座和60座的客車每輛每天的租金各是多少元嗎甲、乙兩同學想了一下,都說知道了價格

聰明的你知道45座和60座的客車每輛每天的租金各是多少元嗎?

2公司經(jīng)理問你們準備怎樣租車,甲同學說我的方案是只租用45座的客車可是會有一輛客車空出30個座位;乙同學說我的方案只租用60座客車正好坐滿且比甲同學的方案少用兩輛客車王老師在旁聽了他們的談話說從經(jīng)濟角度考慮,還有別的方案嗎?如果是你,你該如何設(shè)計租車方案,并說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知CD為線段AB上的兩點,點M,N分別為ACBD的中點,若AB13CD5,求線段MN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,銳角ABC內(nèi)接于O,若O的半徑為6,sinA=,求BC的長.

【答案】BC=8.

【解析】試題分析:通過作輔助線構(gòu)成直角三角形,再利用三角函數(shù)知識進行求解.

試題解析:作⊙O的直徑CD,連接BD,則CD=2×6=12.

點睛:直徑所對的圓周角是直角.

型】解答
結(jié)束】
22

【題目】如圖,一次函數(shù)y=k1x+b與反比例函數(shù)y=的圖象交于A(2,m),B(n,﹣2)兩點.過點BBCx軸,垂足為C,且SABC=5.

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)根據(jù)所給條件,請直接寫出不等式k1x+b>的解集;

(3)若P(p,y1),Q(﹣2,y2)是函數(shù)y=圖象上的兩點,且y1≥y2,求實數(shù)p的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)下列語句畫圖:

1)畫∠AOB120°;

2)畫∠AOB的角平分線OC;

3)反向延長OC得射線OD;

4)分別在射線OAOB、OD上畫線段OEOFOG2cm

5)連接EF、EG、FG;

6)你能發(fā)現(xiàn)EF、EG、FG有什么關(guān)系?∠EFG、∠EGF、∠GEF有什么關(guān)系?

查看答案和解析>>

同步練習冊答案