【題目】已知,在△ABC中,∠C=90°,AC=BC=7DAB的中點(diǎn),點(diǎn)EAC上,點(diǎn)FBC上,DE=DF,若BF=4,則EF=_______

【答案】5

【解析】

分別就E,FAC,BC上和延長(zhǎng)線(xiàn)上,分別畫(huà)出圖形,過(guò)D作DG⊥AC,DH⊥BC,垂足為G,H,通過(guò)構(gòu)造全等三角形和運(yùn)用勾股定理作答即可.

解:①過(guò)D作DG⊥AC,DH⊥BC,垂足為G,H

∴DG∥BC,∠CDG=∠CDH=45°

又∵DAB的中點(diǎn),

∴DG=BC

同理:DH=AC

又∵BC=AC

∴DG=DH

在Rt△DGE和Rt△DHF中

DG=DH,DE=DF

∴Rt△DGE≌Rt△DHF(HL)

∴GE=HF

又∵DG=DH,DC=DC

∴△GDC≌△FHC

∴CG=HC

∴CE=GC-GE=CH-HF=CF=AB-BF=3

∴EF=

②過(guò)D作DG⊥AC,DH⊥BC,垂足為G,H

∴DG∥BC,∠CDG=∠CDH=45°

又∵DAB的中點(diǎn),

∴DG=BC

同理:DH=AC

又∵BC=AC

∴DG=DH

在Rt△DGE和Rt△DHF中

DG=DH,DE=DF

∴Rt△DGE≌Rt△DHF(HL)

∴GE=HF

又∵DG=DH,DC=DC

∴△GDC≌△FHC

∴CG=HC

∴CE=CF=AC+AE=AB+BF=7+4=11

∴EF=

③如圖,以點(diǎn)D為圓心,以DF長(zhǎng)為半徑畫(huà)圓交AC邊分別為E、,過(guò)點(diǎn)D作DH⊥AC于點(diǎn)H,可知,可證△EHD≌△,,△DHC為等腰直角三角形,

∴∠1+∠2=45°

∴∠EDF=2(∠1+∠2)=90°

∴△EDF為等腰直角三角形

可證

∴AE=CF=3,CE=BF=4

④有第知,EF=5,且△EDF為等腰直角三角形,

ED=DF=,可證,

綜上可得:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=ACDBC邊上一點(diǎn),∠A=36°,BD平分∠ABCAC于點(diǎn)D.

1)求證:BD=BC;

2)寫(xiě)出圖中所有的等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB,延長(zhǎng)ACE,使CE=AC.

(1)求證:DE=DB;

(2)連接BE,試判斷△ABE的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)y=x2+bx+cy軸交于點(diǎn)A(0,2),對(duì)稱(chēng)軸為直線(xiàn)x=﹣2,平行于x軸的直線(xiàn)與拋物線(xiàn)交于B、C兩點(diǎn),點(diǎn)B在對(duì)稱(chēng)軸左側(cè),BC=6.

(1)求此拋物線(xiàn)的解析式.

(2)點(diǎn)Px軸上,直線(xiàn)CP將△ABC面積分成2:3兩部分,請(qǐng)直接寫(xiě)出P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtBCD中,∠CBD=90°,BC=BD,點(diǎn)ACB的延長(zhǎng)線(xiàn)上,且BA=BC,點(diǎn)E在直線(xiàn)BD上移動(dòng),過(guò)點(diǎn)E作射線(xiàn)EFEA,交CD所在直線(xiàn)于點(diǎn)F.

(1)當(dāng)點(diǎn)E在線(xiàn)段BD上移動(dòng)時(shí),如圖(1)所示,求證:AE=EF;

(2)當(dāng)點(diǎn)E在直線(xiàn)BD上移動(dòng)時(shí),如圖(2)、圖(3)所示,線(xiàn)段AEEF又有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫(xiě)出你的猜想,不需證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,△ACB中,∠CAB的平分線(xiàn)與過(guò)BC邊垂直平分線(xiàn)DE交于E點(diǎn),EFAB,垂足是F,EGAC,垂足是G.

1)求證:BF=CG

2)若AB=a,AC=b(a>b),求BF長(zhǎng)(a、b表示BF長(zhǎng)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊 中, , ,點(diǎn) 從點(diǎn) 出發(fā)沿 方向運(yùn)動(dòng),連接 ,以 為邊,在 右側(cè)按如圖方式作等邊 ,當(dāng)點(diǎn)P從點(diǎn)E運(yùn)動(dòng)到點(diǎn)A時(shí),求點(diǎn)F運(yùn)動(dòng)的路徑長(zhǎng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC,ACB=90°,A=30°,AB的垂直平分線(xiàn)分別交ABAC于點(diǎn)D,E.

(1)求證:AE=2CE;

(2)連接CD,請(qǐng)判斷BCD的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,ABBD,sinA=,將ABCD放置在平面直角坐標(biāo)系中,且ADx軸,點(diǎn)D的橫坐標(biāo)為1,點(diǎn)C的縱坐標(biāo)為3,恰有一條雙曲線(xiàn)y=(k>0)同時(shí)經(jīng)過(guò)B、D兩點(diǎn),則點(diǎn)B的坐標(biāo)是_____

查看答案和解析>>

同步練習(xí)冊(cè)答案