【題目】如圖,拋物線y=x2+bx+c與y軸交于點(diǎn)A(0,2),對稱軸為直線x=﹣2,平行于x軸的直線與拋物線交于B、C兩點(diǎn),點(diǎn)B在對稱軸左側(cè),BC=6.
(1)求此拋物線的解析式.
(2)點(diǎn)P在x軸上,直線CP將△ABC面積分成2:3兩部分,請直接寫出P點(diǎn)坐標(biāo).
【答案】(1)拋物線的解析式為y=x2+4x+2;(2)P的坐標(biāo)為(﹣6,0)或(﹣13,0).
【解析】(1)由對稱軸直線x=2,以及A點(diǎn)坐標(biāo)確定出b與c的值,即可求出拋物線解析式;
(2)由拋物線的對稱軸及BC的長,確定出B與C的橫坐標(biāo),代入拋物線解析式求出縱坐標(biāo),確定出B與C坐標(biāo),利用待定系數(shù)法求出直線AB解析式,作出直線CP,與AB交于點(diǎn)Q,過Q作QH⊥y軸,與y軸交于點(diǎn)H,BC與y軸交于點(diǎn)M,由已知面積之比求出QH的長,確定出Q橫坐標(biāo),代入直線AB解析式求出縱坐標(biāo),確定出Q坐標(biāo),再利用待定系數(shù)法求出直線CQ解析式,即可確定出P的坐標(biāo).
(1)由題意得:x=﹣=﹣=﹣2,c=2,
解得:b=4,c=2,
則此拋物線的解析式為y=x2+4x+2;
(2)∵拋物線對稱軸為直線x=﹣2,BC=6,
∴B橫坐標(biāo)為﹣5,C橫坐標(biāo)為1,
把x=1代入拋物線解析式得:y=7,
∴B(﹣5,7),C(1,7),
設(shè)直線AB解析式為y=kx+2,
把B坐標(biāo)代入得:k=﹣1,即y=﹣x+2,
作出直線CP,與AB交于點(diǎn)Q,過Q作QH⊥y軸,與y軸交于點(diǎn)H,BC與y軸交于點(diǎn)M,
可得△AQH∽△ABM,
∴,
∵點(diǎn)P在x軸上,直線CP將△ABC面積分成2:3兩部分,
∴AQ:QB=2:3或AQ:QB=3:2,即AQ:AB=2:5或AQ:QB=3:5,
∵BM=5,
∴QH=2或QH=3,
當(dāng)QH=2時(shí),把x=﹣2代入直線AB解析式得:y=4,
此時(shí)Q(﹣2,4),直線CQ解析式為y=x+6,令y=0,得到x=﹣6,即P(﹣6,0);
當(dāng)QH=3時(shí),把x=﹣3代入直線AB解析式得:y=5,
此時(shí)Q(﹣3,5),直線CQ解析式為y=x+,令y=0,得到x=﹣13,此時(shí)P(﹣13,0),
綜上,P的坐標(biāo)為(﹣6,0)或(﹣13,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是邊長為6cm的等邊三角形,點(diǎn)D從B點(diǎn)出發(fā)沿B→A方向在線段BA上以a cm/s速度運(yùn)動(dòng),與此同時(shí),點(diǎn)E從線段BC的某個(gè)端點(diǎn)出發(fā),以b cm/s速度在線段BC上運(yùn)動(dòng),當(dāng)D到達(dá)A點(diǎn)后,D、E運(yùn)動(dòng)停止,運(yùn)動(dòng)時(shí)間為t(秒).
(1)如圖1,若a=b=1,點(diǎn)E從C出發(fā)沿C→B方向運(yùn)動(dòng),連AE、CD,AE、CD交于F,連BF.當(dāng)0<t<6時(shí):
①求∠AFC的度數(shù);
②求的值;
(2)如圖2,若a=1,b=2,點(diǎn)E從B點(diǎn)出發(fā)沿B→C方向運(yùn)動(dòng),E點(diǎn)到達(dá)C點(diǎn)后再沿C→B方向運(yùn)動(dòng).當(dāng)t≥3時(shí),連DE,以DE為邊作等邊△DEM,使M、B在DE兩側(cè),求M點(diǎn)所經(jīng)歷的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,∠BAC=106°,EF、MN分別是AB、AC的垂直平分線,點(diǎn)E、N在BC上,則∠EAN=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ACB中,∠ACB=90°,AC=BC,點(diǎn)C的坐標(biāo)為(﹣2,0),點(diǎn)A的坐標(biāo)為(﹣6,3),求點(diǎn)B的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等邊△ABC的邊長是2,以BC邊上的高AB1為邊作等邊三角形,得到第一個(gè)等邊△AB1C1;再以等邊△AB1C1的B1C1邊上的高AB2為邊作等邊三角形,得到第二個(gè)等邊△AB2C2;再以等邊△AB2C2的B2C2邊上的高AB3為邊作等邊三角形,得到第三個(gè)等邊△AB3C3;…,記△B1CB2的面積為S1,△B2C1B3的面積為S2,△B3C2B4的面積為S3,如此下去,則Sn=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠甲、乙兩車間接到加工一批零件的任務(wù),從開始加工到完成這項(xiàng)任務(wù)共用了9天,乙車間在加工2天后停止加工,引入新設(shè)備后繼續(xù)加工,直到與甲車間同時(shí)完成這項(xiàng)任務(wù)為止,設(shè)甲、乙車間各自加工零件總數(shù)為y(件),與甲車間加工時(shí)間x(天),y與x之間的關(guān)系如圖(1)所示.由工廠統(tǒng)計(jì)數(shù)據(jù)可知,甲車間與乙車間加工零件總數(shù)之差z(件)與甲車間加工時(shí)間x(天)的關(guān)系如圖(2)所示.
(1)甲車間每天加工零件為_____件,圖中d值為_____.
(2)求出乙車間在引入新設(shè)備后加工零件的數(shù)量y與x之間的函數(shù)關(guān)系式.
(3)甲車間加工多長時(shí)間時(shí),兩車間加工零件總數(shù)為1000件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在△ABC中,∠C=90°,AC=BC=7,D是AB的中點(diǎn),點(diǎn)E在AC上,點(diǎn)F在BC上,DE=DF,若BF=4,則EF=_______
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為提高學(xué)生的閱讀興趣,某學(xué)校建立了共享書架,并購買了一批書籍.其中購買種圖書花費(fèi)了3000元,購買種圖書花費(fèi)了1600元,A種圖書的單價(jià)是種圖書的1.5倍,購買種圖書的數(shù)量比種圖書多20本.
(1)求和兩種圖書的單價(jià);
(2)書店在“世界讀書日”進(jìn)行打折促銷活動(dòng),所有圖書都按8折銷售學(xué)校當(dāng)天購買了種圖書20本和種圖書25本,共花費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三位歌手進(jìn)入“我是歌手”的決賽,他們通過抽簽來決定演唱順序.
(1)求甲第一位出場的概率;
(2)求甲比乙先出場的概率,請用列表或畫樹狀圖的方法進(jìn)行分析說明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com