【題目】如圖,在等邊ABC中,AB=BC=AC=6cm,點(diǎn)P從點(diǎn)B出發(fā),沿BC方向以15cm/s的速度運(yùn)動到點(diǎn)C停止,同時點(diǎn)Q從點(diǎn)A出發(fā),沿AB方向以1cm/s的速度運(yùn)動,當(dāng)點(diǎn)P停止運(yùn)動時,點(diǎn)Q也隨之停止運(yùn)動,連接PQ,過點(diǎn)PBC的垂線,過點(diǎn)QBC的平行線,兩直線相交于點(diǎn)M.設(shè)點(diǎn)P的運(yùn)動時間為xs),MPQABC重疊部分的面積為ycm2)(規(guī)定:線段是面積為0的圖形).

1)當(dāng)x= s)時,PQBC

2)當(dāng)點(diǎn)M落在AC邊上時,x= s);

3)求y關(guān)于x的函數(shù)解析式,并寫出自變量x的取值范圍.

【答案】11.5;(23;(3

【解析】

1)令PQBC,表示出BPBQ的長,利用余弦的定義得出方程,求解即可;

2)根據(jù)△ABC是等邊三角形得出BQ=CM,表示出PC的長,結(jié)合余弦的定義得出方程,求解即可;

3)根據(jù)(1)和(2)中結(jié)論,分0≤x1.5時,1.5≤x≤3時,3x≤4時三種情況畫出圖形,求出相應(yīng)邊長,可得函數(shù)解析式.

解:(1)當(dāng)PQBC時,

BP=1.5x,BQ=6-x

BQ=,即6-x=

6-x=3x,

解得:x=1.5

∴當(dāng)x=1.5時,PQBC

2)∵△ABC是等邊三角形,QMBC

AQ=AM,BQ=CM

PC=6-1.5x,CM=,

BQ=12-3xAQ=x,

12-3x+x=6

解得x=3,

∴當(dāng)點(diǎn)M落在AC上時,x=3s);

3)當(dāng)0≤x1.5時,過QQEBCE,

BQ=6-x,

QE=BQsinB=BQsin60°,而DP=BPtanB=BPtan60°,

y=SBPQ-SBPD

=

=

=;

當(dāng)1.5≤x≤3時,過點(diǎn)QQDBCD,

可知:四邊形QDPM為矩形,

QM=DP=BP-BD=BP-BQ·cos60°,

PM=MC·sin60°=BQ·sin60°

y=SPQM

=

=

=

當(dāng)3x≤4時,

如圖所示,過點(diǎn)QQEBC于點(diǎn)E,

可知四邊形QEPM為矩形,

QM=EP=BP-BE=BP-BQ·tanB=1.5x-6-x=2x-3,

QMBC

∴△AQO為等邊三角形,∠MON=C=60°,

AQ=OQ=AO=x

OM=QM-OQ=2x-3-x=x-3,

PC=6-1.5x,∠C=60°,

NP=PC·tanC= PC·tan60°=,

MN=MP-NP=QE-NP=BQ·sinB-NP=6-x·sin60°-=

y=SPQM-SNOM

=

=-x-3)(

=

y關(guān)于x的函數(shù)解析式為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,ABC=30°,CDE是等邊三角形,點(diǎn)D在邊AB上.

(1)如圖1,當(dāng)點(diǎn)E在邊BC上時,求證DE=EB;

(2)如圖2,當(dāng)點(diǎn)E在△ABC內(nèi)部時,猜想EDEB數(shù)量關(guān)系,并加以證明;

(3)如圖3,當(dāng)點(diǎn)E在△ABC外部時,EHAB于點(diǎn)H,過點(diǎn)EGEAB,交線段AC的延長線于點(diǎn)G,AG=5CG,BH=3.求CG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的三個頂點(diǎn)都在格點(diǎn)上,點(diǎn)A的坐標(biāo)為(2,4),請解答下列問題:

(1)畫出ABC關(guān)于x軸對稱的A1B1C1,并寫出點(diǎn)A1的坐標(biāo).

(2)畫出A1B1C1繞原點(diǎn)O旋轉(zhuǎn)180°后得到的A2B2C2,并寫出點(diǎn)A2的坐標(biāo).

【答案】(1)作圖見解析;點(diǎn)A1的坐標(biāo)(2,﹣4);(2)作圖見解析;點(diǎn)A2的坐標(biāo)(﹣2,4).

【解析】

試題分析:(1)分別找出A、B、C三點(diǎn)關(guān)于x軸的對稱點(diǎn),再順次連接,然后根據(jù)圖形寫出A點(diǎn)坐標(biāo);

(2)將A1B1C1中的各點(diǎn)A1、B1、C1繞原點(diǎn)O旋轉(zhuǎn)180°后,得到相應(yīng)的對應(yīng)點(diǎn)A2、B2、C2,連接各對應(yīng)點(diǎn)即得A2B2C2

試題解析:(1)如圖所示:點(diǎn)A1的坐標(biāo)(2,﹣4);

(2)如圖所示,點(diǎn)A2的坐標(biāo)(﹣2,4).

考點(diǎn):1.作圖-旋轉(zhuǎn)變換;2.作圖-軸對稱變換.

型】解答
結(jié)束】
18

【題目】觀察下面的點(diǎn)陣圖和相應(yīng)的等式,探究其中的規(guī)律:

(1)認(rèn)真觀察,并在④后面的橫線上寫出相應(yīng)的等式.

1=1 1+2==3 1+2+3==6    

(2)結(jié)合(1)觀察下列點(diǎn)陣圖,并在⑤后面的橫線上寫出相應(yīng)的等式.

1=121+3=223+6=326+10=42   

(3)通過猜想,寫出(2)中與第n個點(diǎn)陣相對應(yīng)的等式   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,函數(shù)y=﹣x+5的圖象與函數(shù)yk0)的圖象相交于點(diǎn)A,并與x軸交于點(diǎn)C,SAOC15.點(diǎn)D是線段AC上一點(diǎn),CDAC23

1)求k的值;

2)根據(jù)圖象,直接寫出當(dāng)x0時不等式>﹣x+5的解集;

3)求△AOD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,,點(diǎn)邊上,與點(diǎn)、不重合,過點(diǎn)的垂線與的延長線相交于點(diǎn),連結(jié),交于點(diǎn)

1)當(dāng)的中點(diǎn)時,求的長;

2)當(dāng)是以為腰的等腰三角形時,求

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】每到春夏交替時節(jié),楊樹的楊絮漫天飛舞,易引發(fā)皮膚病、呼吸道疾病等,給人們生活造成困擾,為了解市民對治理?xiàng)钚醴椒ǖ馁澩闆r,某課題小組隨機(jī)調(diào)查了部分市民(調(diào)查問卷如下),并根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計(jì)圖:

調(diào)查問卷

治理?xiàng)钚酰耗x哪一項(xiàng)? (每人只選一項(xiàng))

A.減少楊樹新增面積,控制楊樹每年的栽種量;

B.調(diào)整樹種結(jié)構(gòu),逐漸更換現(xiàn)有楊樹;

C.選育無絮楊品種,并推廣種植;

D.對楊樹注射生物干擾素,避免產(chǎn)生飛絮;

E.其他.

根據(jù)以上信息,解答下列問題:

1)在扇形統(tǒng)計(jì)圖中,求扇形的圓心角度數(shù);

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)若該市約有萬人,請估計(jì)贊同“選育無絮楊品種,并推廣種植”的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,EAB上一點(diǎn),AFDE于點(diǎn)F,已知DF=5EF=5,過C、D、F的⊙O與邊AD交于點(diǎn)G,則DG=(  )

A.2B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了扎實(shí)推進(jìn)精準(zhǔn)扶貧工作,某地出臺了民生兜底、醫(yī)保脫貧、教育救助、產(chǎn)業(yè)扶持、養(yǎng)老托管和易地搬遷這六種幫扶措施,每戶貧困戶都享受了25種幫扶措施,現(xiàn)把享受了2種、3種、4種和5種幫扶措施的貧困戶分別稱為A、BC、D類貧困戶.為檢査幫扶措施是否落實(shí),隨機(jī)抽取了若干貧困戶進(jìn)行調(diào)查,現(xiàn)將收集的數(shù)據(jù)繪制成下面兩幅不完整的統(tǒng)計(jì)圖:

請根據(jù)圖中信息回答下面的問題:

1)本次抽樣調(diào)查了多少戶貧困戶?

2)抽查了多少戶C類貧困戶?并補(bǔ)全統(tǒng)計(jì)圖;

3)若該地共有13000戶貧困戶,請估計(jì)至少得到4項(xiàng)幫扶措施的大約有多少戶?

4)為更好地做好精準(zhǔn)扶貧工作,現(xiàn)準(zhǔn)備從D類貧困戶中的甲、乙、丙、丁四戶中隨機(jī)選取兩戶進(jìn)行重點(diǎn)幫扶,請用樹狀圖或列表法求出恰好選中甲和丁的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)y=(x<0)的圖象經(jīng)過點(diǎn)A(﹣2,2),過點(diǎn)AABy軸,垂足為B,在y軸的正半軸上取一點(diǎn)P(0,t),過點(diǎn)P作直線OA的垂線l,以直線l為對稱軸,點(diǎn)B經(jīng)軸對稱變換得到的點(diǎn)B′在此反比例函數(shù)的圖象上,則t的值是________

查看答案和解析>>

同步練習(xí)冊答案