【題目】如圖,正方形ABCD中,E為AB上一點,AF⊥DE于點F,已知DF=5EF=5,過C、D、F的⊙O與邊AD交于點G,則DG=( )
A.2B.C.D.
【答案】D
【解析】
連接CF、FG,先證明△AFD∽△EAD,得出,結(jié)合DF=5EF,可計算出AD,AF的長,再證明△AFG∽△DFC,從而得出,求出AG,即可由DG=AD-AG解題.
解:連接CF、FG,
∵正方形ABCD中,∠EAD=∠ADC=90°,AF⊥DE,
∴∠AFD=∠EAD=90°,又∠ADF=∠EDA,
∴△AFD∽△EAD,
∴,
又∵DF=5EF=5,∴EF=1,ED=6,
∴AD=,
在Rt△AFD中,AF==,
∵∠CDF+∠ADF=90°,∠DAF+∠ADF=90°,
∴∠DAF=∠CDF,
∵四邊形GFCD是⊙O的內(nèi)接四邊形,
∴∠FCD+∠DGF=180°,
∵∠FGA+∠DGF=180°,
∴∠FGA=∠FCD,
∴△AFG∽△DFC.
∴,
∴,
∴AG=,
∴DG=AD﹣AG=,
故選:D.
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=x2+2ax-3與x軸交于A、B(1,0)兩點(點A在點B的左側(cè)),與y軸交于點C,將拋物線沿y軸平移m(m>0)個單位,當平移后的拋物線與線段OA有且只有一個交點時,則m的取值范圍是_______________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD的頂點在⊙O上,BD是⊙O的直徑,延長CD、BA交于點E,連接AC、BD交于點F,作AH⊥CE,垂足為點H,已知∠ADE=∠ACB.
(1)求證:AH是⊙O的切線;
(2)若OB=4,AC=6,求sin∠ACB的值;
(3)若,求證:CD=DH.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊△ABC中,AB=BC=AC=6cm,點P從點B出發(fā),沿B→C方向以1.5cm/s的速度運動到點C停止,同時點Q從點A出發(fā),沿A→B方向以1cm/s的速度運動,當點P停止運動時,點Q也隨之停止運動,連接PQ,過點P作BC的垂線,過點Q作BC的平行線,兩直線相交于點M.設點P的運動時間為x(s),△MPQ與△ABC重疊部分的面積為y(cm2)(規(guī)定:線段是面積為0的圖形).
(1)當x= (s)時,PQ⊥BC;
(2)當點M落在AC邊上時,x= (s);
(3)求y關(guān)于x的函數(shù)解析式,并寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某幼兒園購買了A,B兩種型號的玩具,A型玩具的單價比B型玩具的單價少9元,已知該幼兒園用了3120元購買A型玩具的件數(shù)與用4200元購買B型玩具的件數(shù)相等.
(1)該幼兒園購買的A,B型玩具的單價各是多少元?
(2)若A,B兩種型號的玩具共購買200件,且A型玩具數(shù)量不多于B型玩具數(shù)量的3倍,則購買這些玩具的總費用最少需要多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一居民樓前方處有一建筑物,小敏在居民樓的頂部處和底部處分別測得建筑物頂部的仰角為和,求居民樓的高度和建筑物的高度(結(jié)果取整數(shù)).
(參考數(shù)據(jù):,)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A、D、C、F在同一條直線上,AB=DE,BC=EF,要使△ABC≌△DEF,還需要添加一個條件是( 。
A. ∠BCA=∠F; B. ∠B=∠E; C. BC∥EF ; D. ∠A=∠EDF
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC 的頂點分別為 A(-2,2)、B(-4,5)、C(-5,1)和直線 m (直線 m 上各點的橫坐標都為 1).
(1)作出△ABC 關(guān)于 軸對稱的圖形△A1B1C1,并寫出點 A1 的坐標;
(2)作出點 C關(guān)于直線 m 對稱的點C2 , 并寫出點C2 的坐標;
(3)在軸上找一點P,使 PA+PC的值最小,請直接寫出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),矩形的一邊在直角坐標系中軸上,折疊邊,使點落在軸上點處,折痕為,已知,,并設點坐標為,其中.
(1)求點、的坐標(用含的式子表示);
(2)連接,若是等腰三角形,求的值;
(3)如圖(2),設拋物線經(jīng)過A、E兩點,其頂點為,連接AM,若,求、、的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com