【題目】一次函數(shù)y=kx+6與二次函數(shù)y=ax2+c的圖象的一個交點坐標為(1,2),另一個交點是該二次函數(shù)圖象的頂點.
(1)求k,a,c的值;
(2)過點A(0,m)(0<m<6)且垂直于y軸的直線與二次函數(shù)y=ax2+c的圖象相交于B,C兩點,點O為坐標原點,記W=OA2+BC2,求W關(guān)于m的函數(shù)解析式,并求W的最小值.
【答案】(1),,;(2),.
【解析】
(1)先將點代入一次函數(shù)的解析式可求出k的值,從而可得一次函數(shù)的解析式,再根據(jù)二次函數(shù)的解析式可得其頂點坐標為,然后將其代入一次函數(shù)的解析式可求出c的值,最后將點代入二次函數(shù)的解析式可求出a的值;
(2)先由(1)的結(jié)論得出二次函數(shù)的解析式,再令可求出點B、C的橫坐標,從而可得,由此可得出W關(guān)于m的函數(shù)解析式,然后根據(jù)二次函數(shù)的性質(zhì)求最小值即可.
(1)由題意,將點代入一次函數(shù)的解析式得:
解得
則一次函數(shù)的解析式為
二次函數(shù)的頂點坐標為
由題意知,在一次函數(shù)的圖象上
則
將點代入二次函數(shù)的解析式得:,即
解得
綜上,,,;
(2)由(1)得,二次函數(shù)的解析式為
由題意,可設(shè)點B的坐標為,點C的坐標為
令得,即
解得
則
則
整理得:
當時,W隨m的增大而減。划時,W隨m的增大而增大
則當時,W取得最小值,最小值為.
科目:初中數(shù)學 來源: 題型:
【題目】某街道組織志愿者活動,選派志愿者到小區(qū)服務(wù).若每一個小區(qū)安排4人,那么還剩下78人;若每個小區(qū)安排8人,那么最后一個小區(qū)不足8人,但不少于4人.求這個街道共選派了多少名志愿者?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列計算:①;②(x﹣2y)2=x2﹣4y2;③(﹣a)4a3=﹣a7;④x10÷x5=x2,其中錯誤的個數(shù)是( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,AE平分∠BAD交DC于點E,AD=5cm,AB=8cm.
(1)求EC的長.
(2)作∠BCD的平分線交AB于F,求證:四邊形AECF為平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖1,在ABCD中,點E是AB中點,連接DE并延長,交CB的延長線于點F.
(1)求證:△ADE≌△BFE;
(2)如圖2,點G是邊BC上任意一點(點G不與點B、C重合),連接AG交DF于點H,連接HC,過點A作AK∥HC,交DF于點K.
①求證:HC=2AK;
②當點G是邊BC中點時,恰有HD=nHK(n為正整數(shù)),求n的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=a(x+1)(x﹣m)(a為非零常數(shù),1<m<2),當x<﹣1時,y隨x的增大而增大,說法正確的是( )
A.若圖象經(jīng)過點(0,1),則﹣<a<0
B.若x>﹣時,則y隨x的增大而增大
C.若(﹣2020,y1),(2020,y2)是函數(shù)圖象上的兩點,則y1<y2
D.若圖象上兩點(,y1),(+n,y2)對一切正數(shù)n,總有y1>y2,則≤m<2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰△ABC兩腰AB,AC分別交⊙O于點D,E,點A在⊙O外,點B,C在⊙O上(不與D,E重合),連結(jié)BE,DE.已知∠A=∠EBC,設(shè)=k(0<k<1).
(1)若∠A=50°,求的度數(shù);
(2)若k=,求的值;
(3)設(shè)△ABC,△ADE,△BEC的周長分別為c,c1,c2,求證:1<≤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某班興趣小組對函數(shù)y=﹣x2+2|x|的圖象和性質(zhì)進行了探究,探究過程如下,請補充完整.
(1)自變量的取值范圍是全體實數(shù),x與y的幾組對應值列表如下:
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … | ||
y | … | ﹣3 | 0 | 1 | 0 | 1 | 0 | ﹣3 | … |
(1)根據(jù)上表數(shù)據(jù),在如圖所示的平面直角坐標系中描點,并畫出了函數(shù)圖象的一部分,請畫出該圖象的另一部分;
(2)觀察函數(shù)圖象,當y隨x增大而減小時,則x的取值范圍是
(3)進一步探究函數(shù)圖象發(fā)現(xiàn):
①函數(shù)圖象與x軸有 個交點,所以對應方程﹣x2+2|x|=0有 個實數(shù)根;
②方程﹣x2+2|x|=﹣1有 個實數(shù)根;
③若關(guān)于x的方程﹣x2+2|x|=n有4個實數(shù)根,則n的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某網(wǎng)店專售一款電動牙刷,其成本為20元/支,銷售中發(fā)現(xiàn),該商品每天的銷售量y(支)與銷售單價x(元/支)之間存在如圖所示的關(guān)系.
(1)求y與x之間的函數(shù)關(guān)系式.
(2)由于湖北省武漢市爆發(fā)了新型冠狀病毒肺炎(簡稱“新冠肺炎”)疫情,該網(wǎng)店店主決定從每天獲得的利潤中抽出200元捐獻給武漢,為了保證捐款后每天剩余利潤不低于550元,如何確定這款電動牙刷的銷售單價?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com