如圖,已知二次函數(shù)y=0.5x2+mx+n的圖象過點(diǎn)A(-3,6),并與x軸交于點(diǎn)B(-1,0)和精英家教網(wǎng)點(diǎn)C,頂點(diǎn)為P.
(1)求這個(gè)拋物線的解析式;
(2)求線段PC的長(zhǎng);
(3)設(shè)D為線段OC上的一點(diǎn),且∠DPC=∠BAC,求點(diǎn)D的坐標(biāo).
分析:(1)利用拋物線y=
1
2
x2+mx+n
過點(diǎn)-A(-3,6),B(-1,0),解得,m=-1,n=-1.5,從而得到所求的拋物線解析式為y=
1
2
x2-x-
3
2
;
(2)將上題求得的解析式變形為y=
1
2
(x-1)2-2
,求得頂點(diǎn)點(diǎn)P坐標(biāo)為(1,-2)然后求得拋物線與x軸的交點(diǎn)C坐標(biāo)為(3,0),過P作PM⊥x軸于M.根據(jù)P(1,-2)得到PM=2,OM=1,MC=OC-OM=2然后利用勾股定理求得PC的長(zhǎng)即可;
(3)根據(jù)PM=MC得到∠MPC=∠MCP=45°,過點(diǎn)A作AN⊥x軸于N,利用A(-3,6)得到AN=6,ON=3,進(jìn)一步得到CN=OC+ON=6,利用勾股定理求得AC的長(zhǎng),然后利用△CDP∽△CBA得到比例式
CD
CB
=
PC
AC
,將CD=3-a,PC=2
2
,BC=4,代入求得a的值后即可求得點(diǎn)D坐標(biāo).
解答:精英家教網(wǎng)解:(1)∵拋物線y=
1
2
x2+mx+n
過點(diǎn)-A(-3,6),B(-1,0),
9
2
-3m+n=6
1
2
-m+n=0

解得,m=-1,n=-1.5,
∴所求的拋物線解析式為y=
1
2
x2-x-
3
2
…(3分)

(2)∵y=
1
2
(x-1)2-2

∴點(diǎn)P坐標(biāo)為(1,-2)當(dāng)y=0時(shí),
1
2
x2-x-
3
2
=0

∴x1=3,x2=-1
∴點(diǎn)C坐標(biāo)為(3,0),
過P作PM⊥x軸于M.
∵P(1,-2)
∴PM=2,OM=1
∴MC=OC-OM=2
∴PC=
PM2+MC 
=
4+4
=2
2
…(8分)

(3)∵PM=MC
∴∠MPC=∠MCP=45°,
過點(diǎn)A作AN⊥x軸于N,
∵A(-3,6)
∴AN=6,ON=3,
∴CN=OC+ON=6,
∴AC=
AN2+CN2
=
36+36
=6
2

∵AN=CN∴∠NAC=∠NCA=45°
∴∠MCP=∠NCA=45°
∵∠DPC=∠BAC
∴△CDP∽△CBA.
CD
CB
=
PC
AC

設(shè)點(diǎn)D坐標(biāo)為(a,0)
∴CD=3-a,PC=2
2
,BC=4,AC=6
2

3-a
4
=
2
2
6
2
,a=
5
3

∴點(diǎn)D坐標(biāo)為(
5
3
,0)…(13分)
點(diǎn)評(píng):本題考查了二次函數(shù)的綜合知識(shí),解題過程中用到了將點(diǎn)的坐標(biāo)與線段的長(zhǎng)的轉(zhuǎn)化,是解決此類題目中比較關(guān)鍵的地方.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為C(1,1),直線y=kx+m的圖象與該二次函數(shù)的圖象交于A、B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(
5
2
,
13
4
),B點(diǎn)在y軸上,直線與x軸的交點(diǎn)為F,P為線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與A、B不重合),過P作x軸的垂線與這個(gè)二次函數(shù)的圖象交于E點(diǎn).
(1)求k,m的值及這個(gè)二次函數(shù)的解析式;
(2)設(shè)線段PE的長(zhǎng)為h,點(diǎn)P的橫坐標(biāo)為x,求h與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)D為直線AB與這個(gè)二次函數(shù)圖象對(duì)稱軸的交點(diǎn),在線段AB上是否存在點(diǎn)P,使得以點(diǎn)P、E、D為頂點(diǎn)的精英家教網(wǎng)三角形與△BOF相似?若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)y=ax2+bx+3(a≠0)的圖象與x軸交于點(diǎn)A(-1,0)和點(diǎn)B(3,0)兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C.
(1)求此二次函數(shù)的解析式,并寫出它的對(duì)稱軸;
(2)若直線l:y=kx(k>0)與線段BC交于點(diǎn)D(不與點(diǎn)B,C重合),則是否存在這樣的直線l,使得以B,O,D為頂點(diǎn)的三角形與△BAC相似?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)若直線l′:y=m與該拋物線交于M、N兩點(diǎn),且以MN為直徑的圓與x軸相切,求該圓半徑的長(zhǎng)度.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為C(1,0),直線y=x+b與該二次函數(shù)的圖象交于A、B兩點(diǎn),其中點(diǎn)A的坐標(biāo)為(3,4),點(diǎn)B在y軸上.點(diǎn)P為線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與A、B不重合),過點(diǎn)P作x軸的垂線與該二次函數(shù)的圖象交于點(diǎn)E.
(1)求b的值及這個(gè)二次函數(shù)的關(guān)系式;
(2)設(shè)線段PE的長(zhǎng)為h,點(diǎn)P的橫坐標(biāo)為x,求h與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)若點(diǎn)D為直線AB與該二次函數(shù)的圖象對(duì)稱軸的交點(diǎn),則四邊形DCEP能否構(gòu)成平行四邊形?如果能,請(qǐng)求出此時(shí)P點(diǎn)的坐標(biāo);如果不能,請(qǐng)說明理由.
(4)以PE為直徑的圓能否與y軸相切?如果能,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知二次函數(shù)y=ax2-4x+c的圖象與坐標(biāo)軸交于點(diǎn)A(-1,0)和點(diǎn)C(0,-5).
(1)求該二次函數(shù)的解析式和它與x軸的另一個(gè)交點(diǎn)B的坐標(biāo).
(2)在上面所求二次函數(shù)的對(duì)稱軸上存在一點(diǎn)P(2,-2),連接OP,找出x軸上所有點(diǎn)M的坐標(biāo),使得△OPM是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•衡水一模)如圖,已知二次函數(shù)y=-
12
x2+bx+c
的圖象經(jīng)過A(2,0)、B(0,-6)兩點(diǎn).
(1)求這個(gè)二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)圖象的對(duì)稱軸與x軸交于點(diǎn)C,連接BA、BC,求△ABC的面積;
(3)若拋物線的頂點(diǎn)為D,在y軸上是否存在一點(diǎn)P,使得△PAD的周長(zhǎng)最?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案