【題目】某文明小區(qū)50平方米和80平方米兩種戶型的住宅,50平方米住宅套數(shù)是80平方米住宅套數(shù)的2倍.物管公司月底按每平方米2元收取當(dāng)月物管費(fèi),該小區(qū)全部住宅都人住且每戶均按時(shí)全額繳納物管費(fèi).

1)該小區(qū)每月可收取物管費(fèi)90 000元,問該小區(qū)共有多少套80平方米的住宅?

2)為建設(shè)“資源節(jié)約型社會”,該小區(qū)物管公司5月初推出活動一:“垃圾分類送禮物”,50平方米和80平方米的住戶分別有40%和20%參加了此次括動.為提離大家的積扱性,6月份準(zhǔn)備把活動一升級為活動二:“拉圾分類抵扣物管費(fèi)”,同時(shí)終止活動一.經(jīng)調(diào)査與測算,參加活動一的住戶會全部參加活動二,參加活動二的住戶會大幅增加,這樣,6月份參加活動的50平方米的總戶數(shù)在5月份參加活動的同戶型戶數(shù)的基礎(chǔ)上將增加,每戶物管費(fèi)將會減少6月份參加活動的80平方米的總戶數(shù)在5月份參加活動的同戶型戶數(shù)的基礎(chǔ)上將增加,每戶物管費(fèi)將會減少.這樣,參加活動的這部分住戶6月份總共繳納的物管費(fèi)比他們按原方式共繳納的物管費(fèi)將減少,求的值.

【答案】1)該小區(qū)有25080平方米住宅;(2的值為50.

【解析】

1)設(shè)該小區(qū)有x80平方米住宅,則50平方米住宅有2x套,根據(jù)物管費(fèi)90000元,可列方程求解;(250平方米住宅有500×40%=200戶參與活動一,80平方米住宅有250×20%=50戶參與活動一;50平方米住宅每戶所交物管費(fèi)為1001- a%)元,有2001+2a%)戶參與活動二;80平方米住宅每戶所交物管費(fèi)為1601-a%)元,有501+6a%)戶參與活動二.根據(jù)參加活動的這部分住戶6月份總共繳納的物管費(fèi)比他們按原方式共繳納的物管費(fèi)將減少a%,列出方程求解即可.

1)解:設(shè)該小區(qū)有x80平方米住宅,則50平方米住宅有2x套.

由題意得知:

解得

答:該小區(qū)有25080平方米住宅.

2

參與活動一:

50平方米住宅每戶所交物管費(fèi)為100元,有套參與活動一,

80平方米住宅每戶所交物管費(fèi)為160元,有套參與活動二,

參與活動二:

50平方米住宅每戶所交物管費(fèi)為元,有套參與活動一;

80平方米住宅每戶所交物管費(fèi)為元,有50套參與活動二;

由題意得:

.

化簡得:.

解得:(舍去),

(舍去)

答:的值為50.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+c的對稱軸為直線x1,且過點(diǎn)(30),下列結(jié)論:①abc0;②ab+c0;③2a+b0;④b24ac0;正確的有( 。﹤.

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2-(m+2)x+(2m-1)=0。

(1)求證:方程恒有兩個不相等的實(shí)數(shù)根;

(2)若此方程的一個根是1,請求出方程的另一個根,并求以此兩根為邊長的直角三角形的周長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:拋物線與直線y=x+3分別交于x軸和y軸上同一點(diǎn),交點(diǎn)分別是點(diǎn)A和點(diǎn)C,且拋物線的對稱軸為直線x=-2

1)求出拋物線與x軸的兩個交點(diǎn)AB的坐標(biāo).

2)試確定拋物線的解析式.

3)觀察圖象,請直接寫出二次函數(shù)值小于一次函數(shù)值的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在矩形 ABCD AB=8,BC=6,AE=BE,點(diǎn) F 為邊 BC 上任意一點(diǎn),將BEF 沿著 EF 翻折,點(diǎn) B 為點(diǎn) B 的對應(yīng)點(diǎn),則當(dāng)BCD 的面積最小時(shí)BCF 的面積為(

A.4B.6C.4.2D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于的一元二次方程

1)若該方程有兩個實(shí)數(shù)根,求的取值范圍.

2)在(1)的條件下,取符合題意的最大整數(shù),求一元二次方程的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O是△ABC的外接圓,AB為直徑,ODBC交⊙D于點(diǎn)D,AC于點(diǎn)E,連接AD,BD,CDAB=10,cosABC=,tanDBC的值是( )

A.B.C.2D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在地面上有兩根等長的立柱ABCD,它們之間懸掛了一根拋物線形狀的繩子,按照圖中的直角坐標(biāo)系,這條繩子可以用表示

求這條繩子最低點(diǎn)離地面的距離;

現(xiàn)由于實(shí)際需要,要在兩根立柱之間再加一根立柱EF對繩子進(jìn)行支撐如圖,已知立柱EFAB距離為3m,兩旁的繩子也是拋物線形狀,且立柱EF左側(cè)繩子的最低點(diǎn)到EF的距離為1m,到地面的距離為1.8m,求立柱EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線頂點(diǎn)Ax軸負(fù)半軸上,與y軸交于點(diǎn)B,OB1,△OAB為等腰直角三角形

1)求拋物線的解析式

2)若點(diǎn)C在拋物線上,若△ABC為直角三角形,求點(diǎn)C的坐標(biāo)

3)已知直線DE過點(diǎn)(-1,-4),交拋物線于點(diǎn)D、E,過DDFx軸,交拋物線于點(diǎn)F,求證:直線EF經(jīng)過一個定點(diǎn),并求定點(diǎn)的坐標(biāo)

查看答案和解析>>

同步練習(xí)冊答案