【題目】如圖,拋物線y=ax2+bx+c的對(duì)稱軸是x=﹣1.且過點(diǎn)(0.5,0),有下列結(jié)論:
①abc>0; ②a﹣2b+4c=0; ③25a﹣10b+4c=0; ④3b+2c>0;⑤a﹣b≥m(am-b).
其中所有正確的結(jié)論是( )
A. ①②③ B. ①③④ C. ①②③⑤ D. ①③⑤
【答案】D
【解析】試題分析:由拋物線的開口向下可得:a<0,
根據(jù)拋物線的對(duì)稱軸在y軸左邊可得:a,b同號(hào),所以b<0,
根據(jù)拋物線與y軸的交點(diǎn)在正半軸可得:c>0,
∴abc>0,故①正確;
直線x=﹣1是拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸,所以﹣=﹣1,可得b=2a,
a﹣2b+4c=a﹣4a+4c=﹣3a+4c,
∵a<0,
∴﹣3a>0,
∴﹣3a+4c>0,
即a﹣2b+4c>0,故②錯(cuò)誤;
∵拋物線y=ax2+bx+c的對(duì)稱軸是x=﹣1.且過點(diǎn)(,0),
∴拋物線與x軸的另一個(gè)交點(diǎn)坐標(biāo)為(﹣,0),
當(dāng)x=﹣時(shí),y=0,即a(﹣)2+b×(﹣)+c=0,
整理得:25a﹣10b+4c=0,故③正確;
∵b=2a,a+b+c<0,
∴b+b+c<0,
即3b+2c<0,故④錯(cuò)誤;
∵x=﹣1時(shí),函數(shù)值最大,
∴a﹣b+c>m2a﹣mb+c(m≠1),
∴a﹣b>m(am﹣b),所以⑤正確;
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小李按市場(chǎng)價(jià)格30元/千克收購了一批海鮮1000千克存放在冷庫里,據(jù)預(yù)測(cè),海鮮的市場(chǎng)價(jià)格將每天每千克上漲1元.冷凍存放這批海鮮每天需要支出各種費(fèi)用合計(jì)310元,而且這些海鮮在冷庫中最多存放160天,同時(shí)平均每天有3千克的海鮮變質(zhì).
(1)設(shè)x天后每千克該海鮮的市場(chǎng)價(jià)格為y元,試寫出y與x之間的函數(shù)關(guān)系式;
(2)若存放x天后,將這批海鮮一次性出售.設(shè)這批海鮮的銷售總額為P元,試寫出P與x之間的函數(shù)關(guān)系式;
(3)小李將這批海鮮存放多少天后出售可獲得最大利潤,最大利潤是多少元?(利潤W=銷售總額﹣收購成本﹣各種費(fèi)用)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一條拋物線經(jīng)過原點(diǎn)和點(diǎn)C(8,0),A、B是該拋物線上的兩點(diǎn),AB∥x軸,點(diǎn)A坐標(biāo)為(3,4),點(diǎn)E在線段OC上,點(diǎn)F在線段BC上,且滿足∠BEF=∠AOC.
(1)求拋物線的解析式;
(2)若四邊形OABE的面積為14,求S△ECF;
(3)是否存在點(diǎn)E,使得△BEF為等腰三角形?若存在,求點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果y﹣x﹣2=0,那么用含有y的代數(shù)式表示3x﹣1應(yīng)該為( )
A.3y﹣1
B.3y+1
C.3y﹣7
D.3y+7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,以AB為直徑的⊙O交BC于點(diǎn)D,CD=BD,過點(diǎn)D作⊙O的切線交邊AC于點(diǎn)F,交AB的延長線于點(diǎn)E.
(1)求證:EF⊥AC;
(2)若AF=9,EF=12,求OE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】出租車司機(jī)小李某天的運(yùn)營全是在東西走向的人民大街進(jìn)行的,如果規(guī)定向東為正,向西為負(fù),他這天下午的行車?yán)锍倘缦拢▎挝唬?/span>km)
+10、-3、-8、+11、-10、+12、+4、-15、-16、+15
(1)將最后一名乘客送到目的地時(shí),小李距下午出車地點(diǎn)的距離是多少?
(2)若汽車的耗油量為0.5L/㎞,那么這天下午汽車共耗油多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=﹣2x經(jīng)過點(diǎn)P(﹣2,a),點(diǎn)P關(guān)于y軸的對(duì)稱點(diǎn)P′在反比例函數(shù)(k≠0)的圖象上.
(1)求a的值;
(2)直接寫出點(diǎn)P′的坐標(biāo);
(3)求反比例函數(shù)的解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com