【題目】如圖,直線軸、軸分別交、兩點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)是點(diǎn).動(dòng)點(diǎn)出發(fā)以每秒1個(gè)單位的速度運(yùn)動(dòng)到點(diǎn),點(diǎn)在線段上滿足,過點(diǎn)作于點(diǎn),點(diǎn)關(guān)于點(diǎn)的對(duì)稱點(diǎn)為點(diǎn),以為直徑作,設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間為秒.

1)當(dāng)點(diǎn)在段上運(yùn)動(dòng),______時(shí),的相似比為;

2)當(dāng)軸相切時(shí),求的值;

3)若直線交于點(diǎn),是否存在使,若存在,求出的值;若不存在,請(qǐng)說明理由.

【答案】1;(2;(3)存在,

【解析】

1)先求直線與坐標(biāo)軸的交點(diǎn)坐標(biāo),再證△AEF∽△EDO∽△ABO,由△AEF與△EDO的相似比為,即可求得t的值;

2)由⊙My軸相切可知:DGy軸,分兩種情況:0t33t6,用含的表示AEOE,ODBD再利用三角形的相似與點(diǎn)關(guān)于點(diǎn)的對(duì)稱點(diǎn)為點(diǎn)可得答案.

3)分三種情況:0t t33t6,分別建立方程求解即可.

(1)由,可得:

OA3,OB6,

∴tan∠BAO=

tanDEO2

∴∠BAO=∠DEO

EFAB ∴∠AFE=∠DOE90°

∴△AEF∽△EDO∽△ABO

,即:,

∵△AEF與△EDO的相似比為,

,即

, 解得:

故答案為:;

2軸相切,則

當(dāng)點(diǎn)線段上時(shí),即時(shí),如圖,此時(shí),則由可知,,則;又易證,故可得,又點(diǎn)是點(diǎn)關(guān)于點(diǎn)的對(duì)稱點(diǎn),所以,故;又軸,則,即,解得

當(dāng)點(diǎn)線段上時(shí),即時(shí),如圖,此時(shí),,則,故此時(shí),而保持不變;又軸,則,即,解得

綜上,當(dāng)時(shí),軸相切.

3)當(dāng) 時(shí), ∵點(diǎn)A關(guān)于點(diǎn)F的對(duì)稱點(diǎn)為點(diǎn)G,EFAB

EGEAt ∵∠OEG=∠OAB+EGA2OAB,∠OED=∠OAB

∴∠DEG=∠DEG DG為直徑 ∴∠DNG=∠DOE=90°,又DEDE

∴△DEN≌△DEOAAS

NGNA得:, 解得:

同理,當(dāng)時(shí),因?yàn)辄c(diǎn)與點(diǎn)關(guān)于點(diǎn)對(duì)稱,所以易得,又的直徑,所以

如圖,此時(shí)易證,所以,故有,解得

當(dāng)點(diǎn)線段上時(shí),即時(shí),此時(shí)大致圖形如圖所示,設(shè)軸的交點(diǎn)為點(diǎn),過點(diǎn)軸于點(diǎn),則由面積關(guān)系可得,易得,即,又,所以,,所以,又

所以,

,即

解得:

綜上,當(dāng)時(shí),

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在大樓AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1 ,高為DE,在斜坡下的點(diǎn)C處測得樓頂B的仰角為64°,在斜坡上的點(diǎn)D處測得樓頂B的仰角為45°,其中A、C、E在同一直線上.

1)求斜坡CD的高度DE;

2)求大樓AB的高度;(參考數(shù)據(jù):sin64°≈0.9tan64°≈2).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,D、E分別是ABBC上的點(diǎn),且DEAC,若SBDESCDE=14,則SBDESDAC=

A.125B.120C.118D.116

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:拋物線經(jīng)過點(diǎn).

1)求的值;

2)若,求c的值,

3)在(2)的情況下,求這條拋物線的頂點(diǎn)坐標(biāo);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸、軸分別交于點(diǎn),過點(diǎn)作直線軸,點(diǎn)為直線上的一個(gè)動(dòng)點(diǎn),以點(diǎn)為圓心,為半徑作圓,當(dāng)與直線相切時(shí),點(diǎn)的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)P是以C為圓心,1為半徑的⊙C上的一個(gè)動(dòng)點(diǎn),已知A(﹣1,0),B1,0),連接PA,PB,則PA2+PB2的最大值是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,直線yx軸、y軸分別交于點(diǎn)B,C,拋物線yBC兩點(diǎn),且與x軸的另一個(gè)交點(diǎn)為點(diǎn)A,連接AC

1)求拋物線的解析式;

2)在拋物線上是否存在點(diǎn)D(與點(diǎn)A不重合),使得SDBCSABC,若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說明理由;

3)有寬度為2,長度足夠長的矩形(陰影部分)沿x軸方向平移,與y軸平行的一組對(duì)邊交拋物線于點(diǎn)P和點(diǎn)Q,交直線CB于點(diǎn)M和點(diǎn)N,在矩形平移過程中,當(dāng)以點(diǎn)P,Q,M,N為頂點(diǎn)的四邊形是平行四邊形時(shí),求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綠色出行是對(duì)環(huán)境影響最小的出行方式,“共享單車”已成為長春市的一道亮麗的風(fēng)景線.某社會(huì)實(shí)踐活動(dòng)小組為了了解“共享單車”的使用情況,對(duì)本校師生在76日至710日使用單車的情況進(jìn)行了問卷調(diào)查. 以下是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計(jì)圖的一部分:

請(qǐng)根據(jù)以上信息解答下列問題:

177日使用“共享單車”的師生有_________人.

2)不同品牌的“共享單車”各具特色,社會(huì)實(shí)踐活動(dòng)小組針對(duì)有過使用“共享單車”經(jīng)歷的師生做了進(jìn)一步調(diào)查,每個(gè)人都按要求選擇了一種自己喜歡的“共享單車”,統(tǒng)計(jì)結(jié)果如圖,其中喜歡mobike的師生有36人.求喜歡ofo的師生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】利達(dá)經(jīng)銷店為某工廠代銷一種建筑材料(這里的代銷是指廠家先免費(fèi)提供貨源,待貨物售出后再進(jìn)行結(jié)算,未售出的由廠家負(fù)責(zé)處理).當(dāng)每噸售價(jià)為260元時(shí),月銷售量為45噸.該經(jīng)銷店為提高經(jīng)營利潤,準(zhǔn)備采取降價(jià)的方式進(jìn)行促銷.經(jīng)市場調(diào)查發(fā)現(xiàn):當(dāng)每噸售價(jià)每下降10元時(shí),月銷售量就會(huì)增加7.5噸.綜合考慮各種因素,每售出一噸建筑材料共需支付廠家及其它費(fèi)用100元.

1)當(dāng)每噸售價(jià)是240元時(shí),計(jì)算此時(shí)的月銷售量;

2)在遵循“薄利多銷”的原則下,問每噸材料售價(jià)為多少時(shí),該經(jīng)銷店的月利潤為9000元?

3)小靜說:“當(dāng)月利潤最大時(shí),月銷售額也最大.”你認(rèn)為對(duì)嗎?請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊答案