【題目】如圖,是的直徑,是上一點(diǎn),于點(diǎn),過(guò)點(diǎn)作的切線,交的延長(zhǎng)線于點(diǎn),連接.
求證:與相切;
設(shè)交于點(diǎn),若,,求由劣弧、線段和所圍成的圖形面積.
【答案】(1)相切;(2).
【解析】
(1)連接OC,如圖,根據(jù)垂徑定理由OD⊥BC得到CD=BD,則OE為BC的垂直平分線,所以EB=EC,根據(jù)等腰三角形的性質(zhì)得∠EBC=∠ECB,加上∠2=∠1,則∠OBE=∠OCE;再根據(jù)切線的性質(zhì)得∠OCE=90°,所以∠OBE=90°,然后根據(jù)切線的判定定理得BE與⊙O相切;
(2)設(shè)⊙O的半徑為R,則OD=R﹣DF=R﹣2,OB=R.在Rt△OBD,利用勾股定理得(R﹣2)2+(2)2=R2,解得R=4,即OD=2,OB=4,根據(jù)含30度的直角三角形三邊的關(guān)系得到∠OBD=30°,則∠BOD=60°.在Rt△OBE中,計(jì)算BE=OB=4,然后根據(jù)扇形面積公式和S陰影=S四邊形OBEC﹣S扇形OBC進(jìn)行計(jì)算即可.
(1)連接OC,如圖,∵OD⊥BC,∴CD=BD,∴OE為BC的垂直平分線,∴EB=EC,∴∠EBC=∠ECB.
∵OB=OC,∴∠2=∠1,∴∠2+∠EBC=∠1+∠ECB,即∠OBE=∠OCE.
∵CE為⊙O的切線,∴OC⊥CE,∴∠OCE=90°,∴∠OBE=90°,∴OB⊥BE,∴BE與⊙O相切;
(2)設(shè)⊙O的半徑為R,則OD=R﹣DF=R﹣2,OB=R.在Rt△OBD中,BD=BC=2.
∵OD2+BD2=OB2,∴(R﹣2)2+(2)2=R2,解得:R=4,∴OD=2,OB=4,∴∠OBD=30°,∴∠BOD=60°.在Rt△OBE中,BE=OB=4,∴S陰影=S四邊形OBEC﹣S扇形OBC
=2××4×4﹣=16﹣.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰Rt△ABC的直角邊長(zhǎng)為32,從直角頂點(diǎn)A作斜邊BC的垂線交BC于D1,再?gòu)?/span>D1作D1D2⊥AC交AC于D2,再?gòu)?/span>D2作D2D3⊥BC交BC于D3,…,則AD1+D2D3+D4D5+D6D7+D8D9=_____;D1D2+D3D4+D5D6+D7D8+D9D10=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在△ABC中,AD平分∠BAC,DE⊥AB于點(diǎn)E,DF⊥AC于點(diǎn)F,試說(shuō)明AD與EF的位置關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】兩個(gè)完全相同的矩形紙片、如圖放置,重疊部分是四邊形.
試證明四邊形為菱形;
與是什么位置關(guān)系,試證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,△ABC為等邊三角形,FB平分∠ABC,D為BF的中點(diǎn),連接AD交BC的延長(zhǎng)線于點(diǎn)E,若EF⊥BF,則_______________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC中,AB=AC,∠BAC=90°,點(diǎn)D是平面內(nèi)一點(diǎn);
(1)如圖1, BD⊥CD,∠DCA=30°,則∠BAD=
(2)如圖2,若∠BDC=45°,點(diǎn)F是CD中點(diǎn),求證:AF⊥CD;
(3)如圖3,∠BDA=3∠CBD,BD=,求△BCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,分別以直角△ABC的斜邊AB,直角邊AC為邊向△ABC外作等邊△ABD和等邊△ACE,F為AB的中點(diǎn),DE與AB交于點(diǎn)G,EF與AC交于點(diǎn)H,∠ACB=90°,∠BAC=30°.給出如下結(jié)論:
①EF⊥AC;②四邊形ADFE為菱形;③AD=4AG;④FH=BD;其中正確結(jié)論的是( )
A. ①②③ B. ①②④ C. ①③④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一輛客車(chē)從甲地開(kāi)往乙地,一輛出租車(chē)從乙地開(kāi)往甲地,兩車(chē)同時(shí)出發(fā),設(shè)客車(chē)離甲地的距離為千米,出租車(chē)離甲地的距離為千米,兩車(chē)行駛的時(shí)間為x小時(shí),、關(guān)于x的圖象如圖所示:
(1)根據(jù)圖象,分別寫(xiě)出、關(guān)于x的關(guān)系式(需要寫(xiě)出自變量取值范圍);
(2)當(dāng)兩車(chē)相遇時(shí),求x的值;
(3)甲、乙兩地間有、兩個(gè)加油站,相距200千米,若客車(chē)進(jìn)入加油站時(shí),出租車(chē)恰好進(jìn)入加油站,求加油站離甲地的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】這是一道我們?cè)?jīng)探究過(guò)的問(wèn)題:如圖1.等腰直角三角形中,,.直線經(jīng)過(guò)點(diǎn),過(guò)作于點(diǎn),過(guò)作于點(diǎn).易證得≌.(無(wú)需證明),我們將這個(gè)模型稱(chēng)為“一線三等角”或者叫“K形圖”.接下來(lái),我們就利用這個(gè)模型來(lái)解決一些問(wèn)題:
(模型應(yīng)用)
(1)如圖2.已知直線l1:與與坐標(biāo)軸交于點(diǎn)A、B.以AB為直角邊作等腰直角三角形ABC,若存在,請(qǐng)求出C的坐標(biāo);不存在,若說(shuō)明理由.
(2)如圖3已知直線l1:與坐標(biāo)軸交于點(diǎn)A、B.將直線l1繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°至直線l2.直線l2在x軸上方的圖像上是否存在一點(diǎn)Q,使得△QAB是以QA為底的等腰直角三角形?若存在,請(qǐng)求出直線BQ的函數(shù)關(guān)系式;若不存在,說(shuō)明理由.
(拓展延伸)
(3)直線AB:與軸負(fù)半軸、軸正半軸分別交于A、B兩點(diǎn).分別以OB、AB為邊,點(diǎn)B為直角頂點(diǎn)在第一、二象限內(nèi)作等腰直角△OBF和等腰直角△ABE,連EF交y軸于P點(diǎn),如圖4,△EPB的面積是否確定?若確定,請(qǐng)求出具體的值;若不確定,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com