已知AB是⊙O的弦,點(diǎn)C是弦AB上一點(diǎn),且BC:CA=2:1,連接OC并延長(zhǎng)交⊙O于D,又DC=2厘米,OC=3厘米,則圓心O到AB的距離為
7
cm
7
cm
分析:延長(zhǎng)DO交圓于E,利用相交弦定理即可求得AB的長(zhǎng),然后在直角△OBF中利用勾股定理即可求得OF的長(zhǎng).
解答:解:延長(zhǎng)DO交圓于E.
設(shè)CA=x,則BC=2x.
∵DC=2厘米,OC=3厘米,
∴OB=OE=OD=OC+CD=5cm,CE=8cm.
∵AC•BC=CD•CE,
∴2x2=2×8
解得:x=2
2

∴AB=3x=6
2

∴BF=3
2

在直角△OBF中,OF=
OB2-BF2
=
25-(3
2
)2
=
7

故答案是:
7
cm.
點(diǎn)評(píng):本題考查了勾股定理,垂徑定理,以及相交弦定理,正確利用相交弦定理求得AC,BC的長(zhǎng)是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

13、已知AB是⊙O的弦,且AB=OA,則∠AOB=
60
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知AB是⊙O的弦,P是AB上一點(diǎn),AB=10,PA=4,OP=5,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知AB是⊙O的弦,半徑OA=1cm,∠AOB=120°,⊙O上一動(dòng)點(diǎn)P從A點(diǎn)出發(fā),沿逆時(shí)針方向運(yùn)動(dòng)到B點(diǎn),當(dāng)S△POA=S△AOB時(shí),則點(diǎn)P所經(jīng)過的弧長(zhǎng)(不考慮點(diǎn)P與點(diǎn)B重合的情形)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AB是⊙O的弦,半徑OA=2cm,∠AOB=120°.
(1)計(jì)算S△AOB;
(2)⊙O上一動(dòng)點(diǎn)P從A點(diǎn)出發(fā),沿逆時(shí)針方向運(yùn)動(dòng),當(dāng)S△POA=S△AOB時(shí),求P點(diǎn)所經(jīng)過的弧長(zhǎng)(不考慮點(diǎn)P與點(diǎn)B重合的情形)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AB是⊙O的弦,OB=1,∠B=30°,C是弦AB上一動(dòng)點(diǎn)(不與A、B重合),連CO并延長(zhǎng)交⊙O于點(diǎn)D,連AD.
(1)求弦AB長(zhǎng).
(2)當(dāng)∠D=15°時(shí),求∠BOD的度數(shù).
(3)若△ACD與△BOC相似,求AC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案