【題目】如圖,在平面直角坐標(biāo)系中,菱形OABC的邊長(zhǎng)為2,∠AOC=60°,點(diǎn)D為AB邊上的一點(diǎn),經(jīng)過O,A,D三點(diǎn)的拋物線與x軸的正半軸交于點(diǎn)E,連結(jié)AE交BC于點(diǎn)F,當(dāng)DF⊥AB時(shí),CE的長(zhǎng)為__.
【答案】.
【解析】
設(shè)BF=x,則CF=2-x,先確定A、B的坐標(biāo),然后再由菱形的性質(zhì)確定D的坐標(biāo),由于拋物線經(jīng)過O、A、D、E,根據(jù)拋物線的對(duì)稱性可知點(diǎn)A與點(diǎn)D的中點(diǎn)橫坐標(biāo)與點(diǎn)O與點(diǎn)E的中點(diǎn)橫坐標(biāo)相同,可求E,再由平行線等分線段定理列方程求得x,進(jìn)而求得CE.
解:∵菱形OABC的邊長(zhǎng)為2,∠AOC=60°,
∴OA=2,
∴A(1,),
∵菱形OABC,
∴AB=OC=2,AB∥OC,
∴B(3,),
設(shè)BF=x,則CF=2﹣x,
在菱形OABC中,∠B=∠AOC=60°,
∵DF⊥AB,
∴D(3﹣x,),
∴點(diǎn)A與點(diǎn)D的中點(diǎn)為(2﹣x,),
∵拋物線經(jīng)過O,A,D、E,
∴點(diǎn)O與點(diǎn)E的中點(diǎn)為(2﹣x,0),
∴E(4﹣x,0),
∴CE=4﹣x﹣2=2﹣x,
∵AB∥CE,
∴=,
∴=,
∴x=4+2(舍)或x=4﹣2,
∴CE=.
故答案為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小林在學(xué)習(xí)完一次函數(shù)與反比例函數(shù)的圖象與性質(zhì)后,對(duì)函數(shù)圖象與性質(zhì)研究饒有興趣,便想著將一次函數(shù)與反比例函數(shù)的解析式進(jìn)行組合研究.他選取特殊的一次函數(shù)與反比例函數(shù),相加后,得到一個(gè)新的函數(shù).已知,這個(gè)新函數(shù)滿足:當(dāng)時(shí),;當(dāng)時(shí),.
(1)求出小林研究的這個(gè)組合函數(shù)的解析式;
(2)小林依照列表、描點(diǎn)、連線的方法在給定的平面直角坐標(biāo)系內(nèi)畫出了該函數(shù)圖象的一部分,請(qǐng)你在圖中補(bǔ)全小林未畫完的部分,并根據(jù)圖象,寫出該函數(shù)圖象的一條性質(zhì);
(3)請(qǐng)根據(jù)你所畫的函數(shù)圖象,利用所學(xué)函數(shù)知識(shí),直接寫出不等式的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖拋物線y=x2+bx+c(c<0)與x軸交于A、B兩點(diǎn),(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,頂點(diǎn)為D,且OB=OC=3,點(diǎn)E為線段BD上的一個(gè)動(dòng)點(diǎn),EF⊥x軸于F.
(1)求拋物線的解析式;
(2)是否存在點(diǎn)E,使△ECF為直角三角形?若存在,求點(diǎn)E的坐標(biāo);不存在,請(qǐng)說明理由;
(3)連接AC、BC,若點(diǎn)P是拋物線上的一個(gè)動(dòng)點(diǎn),當(dāng)P運(yùn)動(dòng)到什么位置時(shí),∠PCB=∠ACO,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象的一部分,對(duì)稱軸是直線x=1,以下結(jié)論:①abc>0;②3a+c>0;③m為任意實(shí)數(shù),則有a(m2+1)+bm≥0;④若(﹣2,y1),(5,y2)是拋物線上的兩點(diǎn),則y1<y2,正確的有( )個(gè).
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線:與直線l:交于x軸上的一點(diǎn)A,和另一點(diǎn)
求拋物線的解析式;
點(diǎn)P是拋物線上的一個(gè)動(dòng)點(diǎn)點(diǎn)P在A,B兩點(diǎn)之間,但不包括A,B兩點(diǎn)于點(diǎn)M,軸交AB于點(diǎn)N,求MN的最大值;
如圖2,將拋物線繞頂點(diǎn)旋轉(zhuǎn)后,再作適當(dāng)平移得到拋物線,已知拋物線的頂點(diǎn)E在第一象限的拋物線上,且拋持線與拋物線交于點(diǎn)D,過點(diǎn)D作軸交拋物線于點(diǎn)F,過點(diǎn)E作軸交拋物線于點(diǎn)G,是否存在這樣的拋物線,使得四邊形DFEG為菱形?若存在,請(qǐng)求E點(diǎn)的橫坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:有一組對(duì)邊與一條對(duì)角線均相等的四邊形為對(duì)等四邊形,這條對(duì)角線又稱對(duì)等線.
(1)如圖1,在四邊形ABCD中,∠C=∠BDC,E為AB的中點(diǎn),DE⊥AB.求證:四邊形ABCD是對(duì)等四邊形.
(2)如圖2,在5×4的方格紙中,A,B在格點(diǎn)上,請(qǐng)畫出一個(gè)符合條件的對(duì)等四邊形ABCD,使BD是對(duì)等線,C,D在格點(diǎn)上.
(3)如圖3,在圖(1)的條件下,過點(diǎn)E作AD的平行線交BD,BC于點(diǎn)F,G,連結(jié)DG,若DG⊥EG,DG=2,AB=5,求對(duì)等線BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校隨機(jī)抽取部分學(xué)生就“你是否喜歡網(wǎng)課”進(jìn)行問卷調(diào)查,并將調(diào)查結(jié)果進(jìn)行統(tǒng)計(jì)后,繪制成如下統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖.
(1)在統(tǒng)計(jì)表中, , ;
(2)求出扇形統(tǒng)計(jì)圖中“喜歡”網(wǎng)課所對(duì)應(yīng)扇形的圓心角度數(shù);
(3)己知該校共有2 000名學(xué)生,試估計(jì)該!胺浅O矚g”網(wǎng)課的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)計(jì)算: +|1-|-2cos30+()-1-(2019-)0
(2)解不等式組,并求出它的整數(shù)解,再化簡(jiǎn)代數(shù)式,從上述整數(shù)解中選擇一個(gè)合適的數(shù),求此代數(shù)式的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為迎接2020年高中招生考試,某中學(xué)對(duì)全校九年級(jí)學(xué)生進(jìn)行了一次數(shù)學(xué)摸底考試,并隨機(jī)抽取了部分學(xué)生的測(cè)試成績(jī)作為樣本進(jìn)行分析,繪制成了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中所給信息,解答下列問題:
(1)請(qǐng)將表示成績(jī)類別為“中”的條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)請(qǐng)將表示成績(jī)類別為“優(yōu)”的扇形統(tǒng)計(jì)圖補(bǔ)充完整,并計(jì)算成績(jī)類別為“優(yōu)”的扇形所對(duì)應(yīng)的圓心角的度數(shù);
(3)學(xué)校九年級(jí)共有人參加了這次數(shù)學(xué)考試,估算該校九年級(jí)共有多少名學(xué)生的數(shù)學(xué)成績(jī)可以達(dá)到優(yōu)秀.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com