【題目】如圖,小山崗的斜坡AC的坡角α=45°,在與山腳C距離200米的D處,測(cè)得山頂A的仰角為26.6°,小山崗的高AB約為(結(jié)果取整數(shù),參考數(shù)據(jù):sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50)( )

A.164m
B.178m
C.200m
D.1618m

【答案】C
【解析】解:∵在直角三角形ABC中, =tanα=1,
∴BC=AB,
∵在直角三角形ADB中,
=tan26.6°=0.50,
即:BD=2AB,
∵BD﹣BC=CD=200,
∴2AB﹣AB=200,
解得:AB=200米,
答:小山崗的高度為200米;
故選C.
首先在直角三角形ABC中根據(jù)坡角的正切值用AB表示出BC,然后在直角三角形DBA中用BA表示出BD,根據(jù)BD與BC之間的關(guān)系列出方程求解即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圓柱形玻璃容器高19cm,底面周長(zhǎng)為60cm,在外側(cè)距下底1.5cm的點(diǎn)A處有一只蜘蛛,在蜘蛛正對(duì)面的圓柱形容器的外側(cè),距上底1.5cm處的點(diǎn)B處有一只蒼蠅,蜘蛛急于捕捉蒼蠅充饑,請(qǐng)你幫蜘蛛計(jì)算它沿容器側(cè)面爬行的最短距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,數(shù)軸上點(diǎn)A表示的數(shù)為﹣2,點(diǎn)B表示的數(shù)為8,點(diǎn)P從點(diǎn)A出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度向左勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).

(1)填空:

①A、B兩點(diǎn)間的距離AB=   ,線段AB的中點(diǎn)表示的數(shù)為   ;

②用含t的代數(shù)式表示:t秒后,點(diǎn)P表示的數(shù)為   ;點(diǎn)Q表示的數(shù)為   

(2)求當(dāng)t為何值時(shí),PQ=AB;

(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)B的右側(cè)時(shí),PA的中點(diǎn)為M,NPB的三等分點(diǎn)且靠近于P點(diǎn),求PM﹣BN的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著人民生活水平的提高,購(gòu)買老年代步車的人越來(lái)越多.這些老年代步車卻成為交通安全的一大隱患.針對(duì)這種現(xiàn)象,某校數(shù)學(xué)興趣小組在《老年代步車現(xiàn)象的調(diào)查報(bào)告》中就“你認(rèn)為對(duì)老年代步車最有效的管理措施”隨機(jī)對(duì)某社區(qū)部分居民進(jìn)行了問(wèn)卷調(diào)查,其中調(diào)查問(wèn)卷設(shè)置以下選項(xiàng)(只選一項(xiàng)):

A:加強(qiáng)交通法規(guī)學(xué)習(xí);

B:實(shí)行牌照管理;

C:加大交通違法處罰力度;

D:納入機(jī)動(dòng)車管理;

E:分時(shí)間分路段限行

調(diào)查數(shù)據(jù)的部分統(tǒng)計(jì)結(jié)果如下表:

管理措施

回答人數(shù)

百分比

A

25

5%

B

100

m

C

75

15%

D

n

35%

E

125

25%

合計(jì)

a

100%

(1)根據(jù)上述統(tǒng)計(jì)表中的數(shù)據(jù)可得m=_____,n=_____,a=_____;

(2)在答題卡中,補(bǔ)全條形統(tǒng)計(jì)圖;

(3)該社區(qū)有居民2600人,根據(jù)上述調(diào)查結(jié)果,請(qǐng)你估計(jì)選擇“D:納入機(jī)動(dòng)車管理”的居民約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,射線BC∥射線OA,∠C=BAO=100°,試回答下列問(wèn)題:

1)如圖①,求證:OCAB;

2)若點(diǎn)EF在線段BC上,且滿足∠EOB=AOB,并且OF平分∠BOC,

①如圖②,若∠AOB=30°,則∠EOF的度數(shù)等于多少(直接寫出答案即可);

②若平行移動(dòng)AB,當(dāng)∠BOC=6EOF時(shí),求∠ABO

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某林場(chǎng)計(jì)劃購(gòu)買甲、乙兩種樹(shù)苗共800,甲種樹(shù)苗每株24,乙種樹(shù)苗每株30元.甲、乙兩種樹(shù)苗的成活率分別為85%,90%.

(1)若購(gòu)買這兩種樹(shù)苗共用去21000,則甲、乙兩種樹(shù)苗各購(gòu)買多少株?

(2)若要使這批樹(shù)苗的總成活率不低于88%,則甲種樹(shù)苗的數(shù)量應(yīng)滿足怎樣的條件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別與BC,AC交于點(diǎn)D,E,過(guò)點(diǎn)D作⊙O的切線DF,交AC于點(diǎn)F.
(1)求證:DF⊥AC;
(2)若⊙O的半徑為4,∠CDF=22.5°,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形OABC點(diǎn)B(4,4),點(diǎn)E,F(xiàn)分別在邊BC,BA,OE=若∠EOF=45°,OF的解析式為 (  )

A. y=x B. y=x C. y=x D. y=x

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,以AB為直徑的⊙O分別交AC、BC于點(diǎn)D、E,點(diǎn)F在AC的延長(zhǎng)線上,且AC=CF,∠CBF=∠CFB.
(1)求證:直線BF是⊙O的切線;
(2)若點(diǎn)D,點(diǎn)E分別是弧AB的三等分點(diǎn),當(dāng)AD=5時(shí),求BF的長(zhǎng);
(3)在(2)的條件下,如果以點(diǎn)C為圓心,r為半徑的圓上總存在不同的兩點(diǎn)到點(diǎn)O的距離為5,求r的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案