【題目】如圖,是一種斜挎包,其挎帶由雙層部分、單層部分和調(diào)節(jié)扣構(gòu)成.小敏用后發(fā)現(xiàn),通過調(diào)節(jié)扣加長或縮短單層部分的長度,可以使挎帶的長度(單層部分與雙層部分長度的和,其中調(diào)節(jié)扣所占的長度忽略不計)加長或縮短.設(shè)單層部分的長度為xcm,雙層部分的長度為ycm,經(jīng)測量,得到如下數(shù)據(jù):
單層部分的長度x(cm) | … | 4 | 6 | 8 | 10 | … | 150 |
雙層部分的長度y(cm) | … | 73 | 72 | 71 | … |
(1)根據(jù)表中數(shù)據(jù)的規(guī)律,完成以下表格,并直接寫出y關(guān)于x的函數(shù)解析式;
(2)根據(jù)小敏的身高和習(xí)慣,挎帶的長度為120cm時,背起來正合適,請求出此時單層部分的長度;
(3)設(shè)挎帶的長度為lcm,求l的取值范圍.
【答案】(1)y=﹣x+75(2)90cm(3)75≤l≤150
【解析】
試題分析:(1)觀察表格可知,y是x使得一次函數(shù),設(shè)y=kx+b,利用待定系數(shù)法即可解決問題;
(2)列出方程組即可解決問題;
(3)由題意當(dāng)y=0,x=150,當(dāng)x=0時,y=75,可得75≤l≤150.
試題解析:(1)觀察表格可知,y是x使得一次函數(shù),設(shè)y=kx+b,
則有,解得 ,
∴y=﹣x+75.
(2)由題意,解得 ,
∴單層部分的長度為90cm.
(3)由題意當(dāng)y=0,x=150,當(dāng)x=0時,y=75,
∴75≤l≤150.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(閱讀)
如圖,點A是射線DM上的一個動點,以AD為邊作四邊形ABCD,且,,,,直線l經(jīng)過點D,且與四邊形的邊BC或BA相交,設(shè)直線l與DC的夾角,將四邊形ABCD的直角沿直線l折疊,點C落在點處,點B落在點處設(shè)AD的長為m.
(理解)
若點與點A重合如圖,則,;
(嘗試)
當(dāng)時,若點在四邊形ABCD的邊AB上如圖,求m的值;
若點恰為AB的中點如圖,求的度數(shù);
(探究)
作直線,與直線AD交于點G,與直線AB交于點H,當(dāng)與是一對相似的等腰三角形時,請直接寫出及相對應(yīng)的m值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,E為斜邊AB的中點,點P是射線BC上的一個動點,連接AP、PE,將沿著邊PE折疊,折疊后得到,當(dāng)折疊后與的重疊部分的面積恰好為面積的四分之一,則此時BP的長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AE⊥AB且AE=AB,BC⊥CD且BC=CD,那么,按照圖中所標(biāo)注的數(shù)據(jù),圖中實線所圍成的圖形面積為( ).
A.40.5B.48.5C.50D.52.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ABC、∠ACB的平分線相交于O,MN過點O且與BC平行.△ABC的周長為20,△AMN的周長為12,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OP平分∠AOB,PA⊥OA、PB⊥OB,垂足分別為A、B,下列結(jié)論成立的是( )
①PA=PB;②PO平分∠APB;③OA=OB;④AB垂直平分OP
A.①③B.①②③C.②③D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠ABC+∠D=180°,AC平分∠BAD,CE⊥AB,CF⊥AD.試說明:
(1)△CBE≌△CDF;
(2)AB+DF=AF.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com